A Review on Eco-Friendly Synthesis of BiVO4 Nanoparticle and its Eclectic Applications

Authors

  • Suresh Ghotekar Department of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Sangamner 422 605, Savitribai Phule Pune University, Maharashtra, India AND Department of Chemistry, Sanjivani Arts, Commerce and Science College, Kopargaon 423 603, Savitribai Phule Pune University, Maharashtra, India https://orcid.org/0000-0001-7679-8344
  • Khanderao Pagar Department of Chemistry, S.S.R. College of Arts, Commerce and Science College, Silvassa 396 230, Savitribai Phule Pune University, Dadra and Nagar Haveli, India
  • Shreyas Pansambal Department of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Sangamner 422 605, Savitribai Phule Pune University, Maharashtra, India
  • H.C. Ananda Murthy Department of Applied Chemistry, School of Applied Natural Sciences, Adama Science and Technology University, P.O. Box: 1888, Adama, Ethiopia
  • Rajeshwari Oza Department of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Sangamner 422 605, Savitribai Phule Pune University, Maharashtra, India

DOI:

https://doi.org/10.22034/advjscieng20014106

Keywords:

BiVO4 nanoparticle, Applications, Green nanotechnology, Plant extracts

Abstract

The paper presents a review of green syntheses and selective applications of bismuth vanadate nanoparticles (BiVO4 NPs). Generally, ample number of biomolecules exists in plant extracts and these are mainly accountable for the facile green synthesis of BiVO4 NPs. Moreover, BiVO4 NPs has been widely researched in chemistry, biotechnology, physics and biochemistry fields due to their interesting technological chemical, biological, ionic conductivity and ferro-elastic properties. It can also be used in diverse fields, such as sensors, photocatalysis, water splitting and antimicrobial activity. Till date, BiVO4 NPs has been synthesized by various known physical and chemical approaches. The article mainly discusses the green synthesis of BiVO4 NPs via plant extracts. Moreover, this article shows a detailed overview of the green synthesis, characterization and significant applications of BiVO4 NPs.

References

Gawande MB, Goswami A, Felpin FX, Asefa T, Huang X, Silva R, Zou X, Zboril R, Varma RS. Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem. Rev. 2016;116(6):3722-811.

Matussin S, Harunsani MH, Tan AL, Khan MM. Plant-extract-mediated SnO2 nanoparticles: Synthesis and applications. ACS Sustain. Chem. Eng. 2020;8:3040-3054.

Ghotekar S. A review on plant extract mediated biogenic synthesis of CdO nanoparticles and their recent applications. Asian J. Green Chem. 2019;3:187-200.

Tarannum N, Gautam YK. Facile green synthesis and applications of silver nanoparticles: a state-of-the-art review. RSC Adv. 2019;9:34926-34948.

Pagar T, Ghotekar S, Pagar K, Pansambal S, Oza R. A review on bio-synthesized Co3O4 nanoparticles using plant extracts and their diverse applications. J. Chem. Rev. 2019;1:260-270.

Nikam A, Pagar T, Ghotekar S, Pagar K, Pansambal S. A review on plant extract mediated green synthesis of zirconia nanoparticles and applications. J. Chem. Rev. 2019;1:154-163.

Ghotekar S. Plant extract mediated biosynthesis of Al2O3 nanoparticles-a review on plant parts involved, characterization and applications. Nanochem. Res. 2019;4:163-169.

Oza G, Reyes-Calderón A, Mewada A, Arriaga LG, Cabrera GB, Luna DE, Iqbal HM, Sharon M, Sharma A. Plant-based metal and metal alloy nanoparticle synthesis: a comprehensive mechanistic approach. J. Mater. Sci. 2020;55:1309-1330.

Ghotekar S, Pansambal S, Pawar SP, Pagar T, Oza R, Bangale S. Biological activities of biogenically synthesized fluorescent silver nanoparticles using Acanthospermum hispidum leaves extract. SN Appl. Sci. 2019;1:1342.

Korde P, Ghotekar S, Pagar T, Pansambal S, Oza R, Mane D. Plant extract assisted eco-benevolent synthesis of selenium nanoparticles: A review on plant parts involved, characterization and their recent applications. J. Chem. Rev. 2020;2:157-168.

Ghosh Chaudhuri R, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 2012;112:2373-2433.

Pagar K, Ghotekar S, Pagar T, Nikam A, Pansambal S, Oza R, Sanap D, Dabhane H. Antifungal activity of biosynthesized CuO nanoparticles using leaves extract of Moringa oleifera and their characterizations. Asian J. Nanosci. Mater. 2020;3:15-23.

Kamble DR, Bangale SV, Ghotekar SK, Bamane SR. Efficient synthesis of CeVO4 nanoparticles using combustion route and their antibacterial activity. J. Nanostruct. 2018;8:144-151.

Ishak NM, Kamarudin SK, Timmiati SN. Green synthesis of metal and metal oxide nanoparticles via plant extracts: An overview. Mate. Res. Exp. 2019;6:112004.

Ghotekar S, Pansambal S, Pagar K, Pardeshi O, Oza R. Synthesis of CeVO4 nanoparticles using sol-gel auto combustion method and their antifungal activity. Nanochem. Res. 2018;3:189-196.

Savale A, Ghotekar S, Pansambal S, Pardeshi O. Green synthesis of fluorescent CdO nanoparticles using Leucaena leucocephala L. extract and their biological activities. J. Bacteriol. Mycol. 2017;5:00148.

Syedmoradi L, Daneshpour M, Alvandipour M, Gomez FA, Hajghassem H, Omidfar K. Point of care testing: The impact of nanotechnology. Biosens. Bioelec. 2017;87:373-387.

Ghotekar S, Pagar T, Pansambal S, Oza R. A Review on green synthesis of sulfur nanoparticles via plant extract, characterization and its applications. Adv. J. Chem. B 2020;2:128-143

Ghotekar S, Savale A, Pansambal S. Phytofabrication of fluorescent silver nanoparticles from Leucaena leucocephala L. leaves and their biological activities. J. Water Environ. Nanotechnol. 2018;3:95-105.

Pagar T, Ghotekar S, Pansambal S, Oza R, Marasini BP. Facile plant extract mediated eco-benevolent synthesis and recent applications of CaO-NPs: A state-of-the-art review. J. Chem. Rev. 2020;2:201-210.

Ghotekar S, Dabhane H, Pansambal S, Oza R, Tambade P, Medhane V. A review on biomimetic synthesis of Ag2O nanoparticles using plant extract, characterization and its recent applications. Adv. J. Chem. B 2020;2:102-111.

Pansambal S, Deshmukh K, Savale A, Ghotekar S, Pardeshi O, Jain G, Aher Y, Pore D. Phytosynthesis and biological activities of fluorescent CuO nanoparticles using Acanthospermum hispidum L. extract. J. Nanostruct. 2017;7:165-174.

Pansambal S, Ghotekar S, Shewale S, Deshmukh K, Barde N, Bardapurkar P. Efficient synthesis of magnetically separable CoFe2O4@SiO2 nanoparticles and potent catalytic applications for the synthesis of 5-aryl-1, 2, 4-triazolidine-3-thione derivatives. J. Water Environ. Nanotechnol. 2019;4:174-186.

Bangale S, Ghotekar S. Bio-fabrication of silver nanoparticles using Rosa Chinensis L. extract for antibacterial activities. Int. J. Nano Dimens. 2019;10:217-224.

Rajeshkumar S, Naik P. Synthesis and biomedical applications of cerium oxide nanoparticles: A review. Biotechnol. Rep. 2018;17:1-5.

Zhang L, Chen D, Jiao X. Monoclinic structured BiVO4 nanosheets: hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties. J. Phys. Chem. B 2006;110:2668-2673.

Malathi A, Madhavan J, Ashokkumar M, Arunachalam P. A review on BiVO4 photocatalyst: activity enhancement methods for solar photocatalytic applications. Appl. Catal. A 2018;555:47-74.

Hu Y, Fan J, Pu C, Li H, Liu E, Hu X. Facile synthesis of double cone-shaped Ag4V2O7/BiVO4 nanocomposites with enhanced visible light photocatalytic activity for environmental purification. J. Photochem. Photobiol. A 2017;337:172-183.

Lv D, Zhang D, Pu X, Kong D, Lu Z, Shao X, Ma H, Dou J. One-pot combustion synthesis of BiVO4/BiOCl composites with enhanced visible-light photocatalytic properties. Separat. Pur. Technol. 2017;174:97-103.

He H, Berglund SP, Rettie AJ, Chemelewski WD, Xiao P, Zhang Y, Mullins CB. Synthesis of BiVO4 nanoflake array films for photoelectrochemical water oxidation. J. Mater. Chem. A 2014;2:9371-9379.

Timmaji HK, Chanmanee WD, De Tacconi NR, Rajeshwar K. Solution combustion synthesis of BiVO4 nanoparticles: Effect of combustion precursors on the photocatalytic activity. J. Adv. Oxid. Technol. 2011;14:93-105.

Nguyen DT, Hong SS. Synthesis of BiVO4 nanoparticles using microwave process and their photocatalytic activity under visible light irradiation. J. Nanosci. Nanotechnol. 2017;17:2690-2694.

Karunakaran C, Kalaivani S, Vinayagamoorthy P, Dash S. Electrical, optical and visible light-photocatalytic properties of monoclinic BiVO4 nanoparticles synthesized hydrothermally at different pH. Mater. Sci. Semiconduct. Process. 2014;21:122-131.

Ke D, Peng T, Ma L, Cai P, Jiang P. Photocatalytic water splitting for O2 production under visible-light irradiation on BiVO4 nanoparticles in different sacrificial reagent solutions. Appl. Catal. A 2008;350:111-117.

Ren L, Jin L, Wang JB, Yang F, Qiu MQ, Yu Y. Template-free synthesis of BiVO4 nanostructures: I. Nanotubes with hexagonal cross sections by oriented attachment and their photocatalytic property for water splitting under visible light. Nanotechnol. 2009;20:115603.

Castillo NC, Heel A, Graule T, Pulgarin C. Flame-assisted synthesis of nanoscale, amorphous and crystalline, spherical BiVO4 with visible-light photocatalytic activity. Appl. Catal. B 2010;95:335-347.

Sivakumar V, Suresh R, Giribabu K, Narayanan V. BiVO4 nanoparticles: Preparation, characterization and photocatalytic activity. Cogent Chem. 2015;1:1074647.

Eda SI, Fujishima M, Tada H. Low temperature-synthesis of BiVO4 nanorods using polyethylene glycol as a soft template and the visible-light-activity for copper acetylacetonate decomposition. Appl. Catal. B 2012;125:288-293.

Shang M, Wang W, Zhou L, Sun S, Yin W. Nanosized BiVO4 with high visible-light-induced photocatalytic activity: ultrasonic-assisted synthesis and protective effect of surfactant. J. Hazard. Mater. 2009;172:338-344.

Venkatesan R, Velumani S, Kassiba A. Mechanochemical synthesis of nanostructured BiVO4 and investigations of related features. Mater. Chem. Phys. 2012;135:842-848.

García-Pérez UM, Sepúlveda-Guzmán S, Martínez-De La Cruz A. Nanostructured BiVO4 photocatalysts synthesized via a polymer-assisted coprecipitation method and their photocatalytic properties under visible-light irradiation. Solid State Sci. 2012;14:293-298.

Luo Q, Zhang L, Chen X, Tan OK, Leong KC. Mechanochemically synthesized m-BiVO4 nanoparticles for visible light photocatalysis. RSC Adv. 2016;6:15796-15802.

Liu W, Wang X, Cao L, Su G, Zhang L, Wang Y. Microemulsion synthesis and photocatalytic activity of visible light-active BiVO4 nanoparticles. Sci. China Chem. 2011;54:724-729.

Venkatesan R, Velumani S, Tabellout M, Errien N, Kassiba A. Dielectric behavior, conduction and EPR centres in BiVO4 nanoparticles. J. Phys. Chem. Solids 2013;74:1695-1702.

Li C, Pang G, Sun S, Feng S. Phase transition of BiVO4 nanoparticles in molten salt and the enhancement of visible-light photocatalytic activity. J. Nanopart. Res. 2010;12:3069-3075.

Ma L, Li WH, Luo JH. Solvothermal synthesis and characterization of well-dispersed monoclinic olive-like BiVO4 aggregates. Mater. Lett. 2013;102:65-67.

Zhou L, Wang W, Zhang L, Xu H, Zhu W. Single-crystalline BiVO4 microtubes with square cross-sections: microstructure, growth mechanism, and photocatalytic property. J. Phys. Chem. C 2007;111:13659-13664.

Wang M, Liu Q, Luan HY. Preparation, Characterization and photocatalytic property of BiVO4 photocatalyst by Sol-Gel method. Appl. Mech. Mater. 2011;99:1307-1311.

Liu W, Cao L, Su G, Liu H, Wang X, Zhang L. Ultrasound assisted synthesis of monoclinic structured spindle BiVO4 particles with hollow structure and its photocatalytic property. Ultrason. Sonochem. 2010;17:669-674.

Galembeck A, Alves OL. Bismuth vanadate synthesis by metallo-organic decomposition: thermal decomposition study and particle size control. J. Mater. Sci. 2002;37:1923-1927.

Mohamed HE, Sone BT, Khamlich S, Coetsee-Hugo E, Swart HC, Thema T, Sbiaa R, Dhlamini MS. Biosynthesis of BiVO4 nanorods using Callistemon viminalis extracts: Photocatalytic degradation of methylene blue. Mater. Today 2020; in press.

Manjunatha AS, Pavithra NS, Marappa S, Prashanth SA, Nagaraju G. Green synthesis of flower?like BiVO4 nanoparticles by solution combustion method using lemon (Citrus Limon) juice as a fuel: Photocatalytic and electrochemical study. Chem. Select 2018;3:13456-13463.

Mohamed HE, Sone BT, Dhlamini MS, Maaza M. Bio-synthesis of BiVO4 nanorods using extracts of Callistemon viminalis. MRS Adv. 2018;3:2479-2486.

Mohamed HE, Afridi S, Khalil AT, Zohra T, Alam MM, Ikram A, Shinwari ZK, Maaza M. Phytosynthesis of BiVO4 nanorods using Hyphaene thebaica for diverse biomedical applications. AMB Exp. 2019;9:1-4.

Mohamed HE, Sone BT, Fuku XG, Dhlamini MS, Maaza M. Green synthesis of BiVO4 nanorods via aqueous extracts of Callistemon viminalis. AIP Conf. Proc. 2018;1962:040004.

Pramila S, Nagaraju G, Mallikarjunaswamy C, Latha KC, Chandan S, Ramu R, Rashmi V, Lakshmi Ranganatha V. Green Synthesis of BiVO4 nanoparticles by microwave method using Aegle marmelos juice as a fuel: Photocatalytic and antimicrobial study. Anal. Chem. Lett. 2020;10:298-306.

Guo M, He Q, Wang A, Wang W, Fu Z. A novel, simple and green way to fabricate BiVO4 with excellent photocatalytic activity and its methylene blue decomposition mechanism. Cryst. 2016;6:81.

Downloads

Published

2020-12-30

How to Cite

Ghotekar, S., Pagar, K., Pansambal, S., Murthy, H. A., & Oza, R. (2020). A Review on Eco-Friendly Synthesis of BiVO4 Nanoparticle and its Eclectic Applications. Advanced Journal of Science and Engineering, 1(4), 106–112. https://doi.org/10.22034/advjscieng20014106

Issue

Section

Review Article