Lithium Adsorption at the C20 Fullerene-Like Cage: DFT Approach

Authors

  • Kun Harismah Department of Chemical Engineering, Faculty of Engineering, Universitas Muhammadiyah Surakarta, Surakarta, Indonesia
  • Osman Murat Ozkendir School of Graduate Programs, Tarsus University, Tarsus, Turkey and Department of Natural and Mathematical Sciences, Faculty of Engineering, Tarsus University, Tarsus, Turkey
  • Mahmoud Mirzaei Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

DOI:

https://doi.org/10.22034/AJSE2013074

Keywords:

Lithium, Adsorption, Fullerene, DFT, Nano

Abstract

Adsorption of neutral and cationic forms of lithium (Li) atom have been examined at the surface of pristine C20 and boron/nitrogen doped (C12B8 and C12N8) fullerene-like cages by density functional theory (DFT) calculations. All of singular cages have been first optimized and their complex formations with each of Li or Li+ atoms have been examined, subsequently. The spherical structures of all three cages have been approved and the surfaces have been adequate for Li/Li+ adsorption processes. The C12N8 cage has been seen the most proper one for the purpose based on adsorption distances and the corresponding values of binding energy. Generally, the neutral Li atom has been seen to be better adsorbed at the surface of all three cages in comparison with cationic Li+ atom. Examining the electronic orbitals of models indicated that the cages could yield a sensing behavior for differential diagnosis of Li/Li+ adsorptions based on recording the changes of electronic orbitals at the cage structures as an advantage further than containing capability. Finally, based on the obtained computer-based data, C20 fullerene-like cage could be considered for the case of Li adsorption problem in further studies.

References

Ariga K, Yamauchi Y. Nanoarchitectonics from atom to life. Chem. Asian J. 2020;15:718-728.

Iijima S. Synthetic nano-scale fibrous matrix. Nature 1991;56:354-358.

Kroto HW, Heath JR, O'Brien SC, Curl RF, Smalley RE. C60: buckminsterfullerene. Nature 1985;318:162-163.

Sajid MI, Jamshaid U, Jamshaid T, Zafar N, Fessi H, Elaissari A. Carbon nanotubes from synthesis to in vivo biomedical applications. Int. J. Pharm. 2016;501:278-299.

Mirzaei M. Effects of carbon nanotubes on properties of the fluorouracil anticancer drug: DFT studies of a CNT-fluorouracil compound. Int. J. Nano Dimen. 2013;3:175-179.

Rad AS, Ayub K. Nonlinear optical, IR and orbital properties of Ni doped MgO nanoclusters: A DFT investigation. Comput. Theor. Chem. 2018;1138:39-47.

Mirzaei M, Mirzaei M. A computational study of atomic oxygen-doped silicon carbide nanotubes. J. Mol. Model. 2011;17:527-531.

Mirzaei M. The NMR parameters of the SiC-doped BN nanotubes: a DFT study. Physica E 2010;42:1954-1957.

Mirzaei M, Mirzaei M. A theoretical study of boron-doped aluminum phosphide nanotubes. Comput. Theor. Chem. 2011;963:294-297.

Mirzaei M, Mirzaei M. A DFT study of N-doped AlP nanotubes. Monatsh. Chem. 2011;142:115-118.

Golberg D, Bando Y, Han W, Kurashima K, Sato T. Single-walled B-doped carbon, B/N-doped carbon and BN nanotubes synthesized from single-walled carbon nanotubes through a substitution reaction. Chem. Phys. Lett. 1999;308:337-342.

Han J, Zhang LL, Lee S, Oh J, Lee KS, Potts JR, Ji J, Zhao X, Ruoff RS, Park S. Generation of B-doped graphene nanoplatelets using a solution process and their supercapacitor applications. ACS Nano 2013;7:19-26.

Czerw R, Terrones M, Charlier JC, Blase X, Foley B, Kamalakaran R, Grobert N, Terrones H, Tekleab D, Ajayan PM, Blau W. Identification of electron donor states in N-doped carbon nanotubes. Nano Lett. 2001;1:457-460.

Park J, McEuen PL. Formation of ap-type quantum dot at the end of an n-type carbon nanotube. Appl. Phys. Lett. 2001;79:1363-1365.

Mirzaei M, Yousefi M. Modified (n, 0) BN nanotubes (n= 3–10) by acetic acids: DFT studies. Superlat. Microstruct. 2013;55:1-7.

Rad AS, Aghaei SM, Pazoki H, Binaeian E, Mirzaei M. Surface interaction of H2O and H2S onto Ca12O12 nanocluster: Quantum?chemical analyses. Surf. Interface Anal. 2018;50:411-419.

Çelik G, Akta? S, Ate? ?, Özkendir OM, Klysubun W. Crystal and electronic structure study of the Li2Mn1-xNdxO3 battery cathode. Prog. Nat. Sci. 2019;29:119-123.

Ozkendir OM, Gunaydin S, Mirzaei M. Electronic structure study of the LiBC3 borocarbide graphene material. Adv. J. Chem. B 2019;1:37-41.

Peyghan AA, Noei M. A theoretical study of lithium-intercalated pristine and doped carbon nanocones. J. Mex. Chem. Soc. 2014;58:46-51.

Zhou Z, Zhao J, Gao X, Chen Z, Yan J, von Ragué Schleyer P, Morinaga M. Do composite single-walled nanotubes have enhanced capability for lithium storage?. Chem. Mater. 2005;17:992-1000.

Ozkendir OM, Ates S, Celik G, Klysubun W. Influence of boron substitution on the crystal and electronic properties of LiCrO2 battery cathode. Metal. Mater Transact. A 2017;48:2993-2998.

Ozkendir OM, Harfouche M, Ulfat I, Kaya Ç, Celik G, Ates S, Aktas S, Bavegar H, Colak T. Boron activity in the inactive Li2MnO3 cathode material. J. Elec. Spect. Rel. Phenom. 2019;235:23-28.

Ozkendir OM, Mirzaei M. Alkali metal chelation by 3-hydroxy-4-pyridinone. Adv. J. Chem. B. 2019;1:10-16.

Mirzaei M. Science and engineering in silico. Adv. J. Sci. Eng. 2020;1:1-2.

Ozkendir OM. Electronic structure study of Sn-substituted InP semiconductor. Adv. J. Sci. Eng. 2020;1:7-11.

Mirzaei M, Mirzaei M. A theoretical study of boron-doped aluminum phosphide nanotubes. Comput. Theor. Chem. 2011;963:294-297.

Mirzaei M, Mirzaei M. Electronic structure of sulfur terminated zigzag boron nitride nanotube: A computational study. Solid State Sci. 2010;12:1337-1340.

Mirzaei M, Yousefi M. Computational studies of the purine-functionalized graphene sheets. Superlat. Microstruct. 2012;52:612-617.

Mirzaei M, Meskinfam M. Computational studies of effects of tubular lengths on the NMR properties of pristine and carbon decorated boron phosphide nanotubes. Solid State Sci. 2011;13:1926-1930.

Mirzaei M. The NMR parameters of the SiC-doped BN nanotubes: a DFT study. Physica E 2010;42:1954-1957.

Mirzaei M, Yousefi M, Meskinfam M. Density functional studies of oxygen-terminations versus hydrogen-terminations in carbon and silicon nanotubes. Solid State Sci. 2012;14:874-879.

Mokhtari A, Harismah K, Mirzaei M. Covalent addition of chitosan to graphene sheets: Density functional theory explorations of quadrupole coupling constants. Superlat. Microstruct. 2015;88:56-61.

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09 A.01. Gaussian Inc., Wallingford; 2013.

Dobson JF, Gould T. Calculation of dispersion energies. J. Phys. 2012;24:073201.

Faramarzi R, Falahati M, Mirzaei M. Interactions of fluorouracil by CNT and BNNT: DFT analyses. Adv. J. Sci. Eng. 2020;1:62-66.

Mirzaei M. Lab-in-Silico: An international journal. Lab-in-Silico 2020;1:1-2.

Harismah K, Mirzaei M. In silico interactions of steviol with monoamine oxidase enzymes. Lab-in-Silico 2020;1:3-6.

Gunaydin S, Alcan V, Mirzaei M, Ozkendir OM. Electronic structure study of Fe substituted RuO2 semiconductor. Lab-in-Silico 2020;1:7-10.

Harismah K, Mirzaei M. Steviol and iso-steviol vs. cyclooxygenase enzymes: In silico approach. Lab-in-Silico 2020;1:11-15.

Tahmasebi E, Shakerzadeh E. Potential application of B40 fullerene as an innovative anode material for Ca-ion batteries: In silico investigation. Lab-in-Silico 2020;1:16-20.

Yaghoobi R, Mirzaei M. Computational analyses of cytidine and aza-cytidine molecular structures. Lab-in-Silico 2020;1:21-25.

Jahangir M, Iqbal ST, Shahid S, Siddiqui IA, Ulfat I. MATLAB simulation for teaching projectile motion. Adv. J. Sci. Eng. 2020;1:59-61.

Mirzaei M. Nanotechnology for science and engineering. Adv. J. Sci. Eng. 2020;1:67-68.

Ghasemi N, Mirzaei M. Lithium–functionalization of Pyrrole–n–carboxylic Acids (n= 1, 2, 3). Chem. Method. 2019;3:727-736.

Harismah K, Mirzaei M, Moradi R. DFT studies of single lithium adsorption on coronene. Z. Naturforsch. A 2018;73:685-691.

Samadizadeh M, Rastegar SF, Peyghan AA. F?, Cl?, Li+ and Na+ adsorption on AlN nanotube surface: A DFT study. Physica E 2015;69:75-80.

Downloads

Published

2020-09-30

How to Cite

Harismah, K., Ozkendir, O. M., & Mirzaei, M. (2020). Lithium Adsorption at the C20 Fullerene-Like Cage: DFT Approach. Advanced Journal of Science and Engineering, 1(3), 74–79. https://doi.org/10.22034/AJSE2013074

Issue

Section

Original Research Article