Interactions of Fluorouracil by CNT and BNNT: DFT Analyses

Authors

  • Rahim Faramarzi Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
  • Mojtaba Falahati Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
  • Mahmoud Mirzaei Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran https://orcid.org/0000-0001-9346-4901

DOI:

https://doi.org/10.22034/AJSE.2012062

Keywords:

BNNT, CNT, Fluorouracil, DFT, Computations, Interactions

Abstract

The effects carbon nanotube (CNT) and boron nitride nanotube (BNNT) have been examined on the properties of fluorouracil (FU) anti-cancer drug in CNT-FU and BNNT-FU complex formations through density functional theory (DFT) calculations. Molecular and atomic scale properties have been evaluated for FU in singular and complex forms to find possible solution for the mentioned problem of this work. Based on the obtained results, BNNT-FU has been seen almost as a chemical complex versus physical CNT-FU complex. Moreover, molecular orbital properties approved such type of complex formations for both CNT-FU and BNNT-FU. Atomic scale properties also indicated many more significant effects for atoms of FU in BNNT-FU than CNT-FU, in which the trend could make a conclusion that the effects on FU are many more significant in BBNT-FU in comparison with CNT-FU. It is worth to note that knowing details of interactions is very much important for molecular consideration in drug delivery systems.

References

Iijima S. Synthetic nano-scale fibrous matrix. Nature 1991;56:354-358.

Hoseininezhad-Namin MS, Pargolghasemi P, Alimohammadi S, Rad AS, Taqavi L. Quantum chemical study on the adsorption of metformin drug on the surface of pristine, Si-and Al-doped (5, 5) SWCNTs. Physica E 2017;90:204-213.

Mirzaei M, Harismah K, Jafari E, Gülseren O, Rad AS. Functionalization of (n, 0) CNTs (n= 3–16) by uracil: DFT studies. Eur. Phys. J. B 2018;91:14.

Harismah K, Mirzaei M, Sahebi H, Gülseren O, Rad AS. Chemically uracil–functionalized carbon and silicon carbide nanotubes: computational studies. Mater. Chem. Phys. 2018;205:164-170.

Moghaddam HK, Maraki MR, Rajaei A. Application of Carbon Nanotubes (CNT) on The Computer Science and Electrical Engineering: A Review. Int. J. Reconfig. Embed. Sys. 2020;9:61.

Sharma V, Kagdada HL, Jha PK, ?piewak P, Kurzyd?owski KJ. Thermal transport properties of boron nitride based materials: A review. Renew. Sustain. Energy Rev. 2020;120:109622.

Huang J, Guo Y, Fan Y, Liang Y. Molecular dynamics investigation of the thermal properties in single-walled boron nitride nanotube. Mater. Res. Exp. 2020;7:025025.

Mirzaei M, Yousefi M, Meskinfam M. Chemical shielding properties for BN, BP, AlN, and AlP nanocones: DFT studies. Superlat. Microstruct. 2012;51:809-813.

Mirzaei M. The NMR parameters of the SiC-doped BN nanotubes: a DFT study. Physica E 2010;42:1954-1957.

Nouri A, Mirzaei M. DFT calculations of B-11 and N-15 NMR parameters in BN nanocone. J. Mol. Struct. THEOCHEM 2009;913:207-209.

Yu J, Chen Y, Cheng BM. Dispersion of boron nitride nanotubes in aqueous solution with the help of ionic surfactants. Solid State Commun. 2009;149:763-766.

Wong BS, Yoong SL, Jagusiak A, Panczyk T, Ho HK, Ang WH, Pastorin G. Carbon nanotubes for delivery of small molecule drugs. Adv. Drug Deliver. Rev. 2013;65:1964-2015.

Mokhtari A, Harismah K, Mirzaei M. Covalent addition of chitosan to graphene sheets: density functional theory explorations of quadrupole coupling constants. Superlat. Microstruct. 2015;88:56-61.

Harismah K, Sadeghi M, Baniasadi R, Mirzaei M. Adsorption of vitamin C on a fullerene surface: DFT studies. J. Nanoanalys. 2017;4:1-7.

Mirzaei M, Yousefi M. Computational studies of the purine-functionalized graphene sheets. Superlat. Microstruct. 2012;52:612-617.

Surya R, Mullassery MD, Fernandez NB, Thomas D. Synthesis and characterization of a clay-alginate nanocomposite for the controlled release of 5-Flurouracil. Journal of Science: Adv. Mater. Dev. 2019;4:432-441.

Truong NP, Whittaker MR, Mak CW, Davis TP. The importance of nanoparticle shape in cancer drug delivery. Exp. Opin. Drug Deliver. 2015;12:129-142.

Malet-Martino M, Martino R. Clinical studies of three oral prodrugs of 5-fluorouracil (capecitabine, UFT, S-1): a review. Oncolog. 2002;7:288-323.

Arias JL. Novel strategies to improve the anticancer action of 5-fluorouracil by using drug delivery systems. Molecules 2008;13:2340-2369.

Mirzaei M, Gülseren O, Hadipour N. DFT explorations of quadrupole coupling constants for planar 5-fluorouracil pairs. Comput. Theor. Chem. 2016;1090:67-73.

Mirzaei M. 5-Fluorouracil: computational studies of tautomers and NMR properties. Turk. Computat. Theor. Chem. 2017;1:27-34.

Mirzaei M. Effects of carbon nanotubes on properties of the fluorouracil anticancer drug: DFT studies of a CNT-fluorouracil compound. Int. J. Nano Dimens. 2013;3:175-179.

Yaraghi A, Ozkendir OM, Mirzaei M. DFT studies of 5-fluorouracil tautomers on a silicon graphene nanosheet. Superlat. Microstruct. 2015;85:784-788.

Kouchaki A, Gülseren O, Hadipour N, Mirzaei M. Relaxations of fluorouracil tautomers by decorations of fullerene-like SiCs: DFT studies. Phys. Lett. A 2016;380:2160-2166.

Yousefvand H, Mirzaei M, Tabbakhian M. Investigating chitosan–curcumin nanorings for containing fluorouracil. Turk. Comput. Theor. Chem. 2017;1:6-12.

Mirzaei M, Ahangari RS. Formations of CNT modified 5-(halogen) uracil hybrids: DFT studies. Superlat. Microstruc. 2014;65:375-379.

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09 A.01. Gaussian Inc., Wallingford; 2013.

Dobson JF, Gould T. Calculation of dispersion energies. J. Phys. 2012;24:073201.

Simon S, Duran M, Dannenberg JJ. How does basis set superposition error change the potential surfaces for hydrogen?bonded dimers? J. Chem. Phys. 1996;105:11024-11031.

Chesnut DB, Rusiloski BE. Ab initio calculation of phosphorus NMR chemical shifts in the gauge including atomic orbital method. Chem. Phys. 1991;157:105-110.

Paul T. Callaghan. Principles of nuclear magnetic resonance microscopy. Oxford University Press. UK; 1993.

Mirzaei M, Meskinfam M. Computational studies of effects of tubular lengths on the NMR properties of pristine and carbon decorated boron phosphide nanotubes. Solid State Sci. 2011;13:1926-1930.

Mirzaei M. A computational NMR study of boron phosphide nanotubes. Z. Naturforsch. A 2010;65:844-848.

Mirzaei M. The NMR parameters of the SiC-doped BN nanotubes: a DFT study. Physica E 2010;42:1954-1957.

Mirzaei M. Calculation of chemical shielding in C-doped zigzag BN nanotubes. Monatsh. Chem. 2009;140:1275-1278.

Mirzaei M. Science and engineering in silico. Adv. J. Sci. Eng. 2020;1:1-2.

Ozkendir OM. Electronic structure study of Sn-substituted InP semiconductor. Adv. J. Sci. Eng. 2020;1:7-11.

Mirzaei M, Meskinfam M. Computational NMR studies of silicon nanotubes. Comput. Theor. Chem. 2011;978:123-125.

Downloads

Published

2020-06-30

How to Cite

Faramarzi, R., Falahati, M., & Mirzaei, M. (2020). Interactions of Fluorouracil by CNT and BNNT: DFT Analyses. Advanced Journal of Science and Engineering, 1(2), 62–66. https://doi.org/10.22034/AJSE.2012062

Issue

Section

Original Research Article