A Chaotic Quantum Secure Communication Scheme Based on a Mixed Open System
DOI:
https://doi.org/10.22034/AJSE2011020Keywords:
Chaos, Quantum cryptography, Secure communication, Quantum key distribution, Discrete variableAbstract
A system of a particle kicked by a Gaussian beam is studied. A description of the chaotic behavior of this system is presented. The suitability of the model for cryptography is demonstrated by applying the Einstein-Podolsky-Rosen correlations and calculating the entanglement parameter. Based on this model, we introduce a quantum secure communication protocol. By using the Shannon information theory about the detailed analysis of the Gaussian cloner attack strategy about this system, we demonstrate that the system is both safe and reliable. The results show that the proposed algorithm improves the problem of failure of encryption, such as small key space and level of security.
References
Wiesner S. Conjugate coding. ACM Sigact News 1983;15:78-88.
Mayers D. Unconditional security in quantum cryptography. J. ACM. 2001;48:351-406.
Kogias I, Xiang Y, He Q, Adesso G. Unconditional security of entanglement-based continuous-variable quantum secret sharing. Phys. Rev. A 2017;95:012315.
Ahadpour S, Sadra Y. Randomness criteria in binary visibility graph and complex network perspective. Info. Sci. 2012;197:161-176.
Chung YF, Wu ZY, Chen TS. Unconditionally secure cryptosystems based on quantum cryptography. Info. Sci. 2008;178:2044-2058.
Chong SK, Hwang T. The enhancement of three-party simultaneous quantum secure direct communication scheme with EPR pairs. Optics Commun. 2011;284:515-518.
Banerjee A, Pathak A. Maximally efficient protocols for direct secure quantum communication. Phys. Lett. A 2012;376:2944-2950.
Xiu XM, Dong L, Gao YJ, Chi F, Ren YP, Liu HW. A revised controlled deterministic secure quantum communication with five-photon entangled state. Optics Commun. 2010;283:344-347.
Gisin N, Ribordy G, Tittel W, Zbinden H. Quantum cryptography. Rev. Modern Phys. 2002;74:145-195.
Huang P, Zhu J, He G, Zeng G. Study on the security of discrete-variable quantum key distribution over non-Markovian channels. J. Phys. B 2012;45:135501.
Chai G, Cao Z, Liu W, Zhang M, Liang K, Peng J. Novel continuous-variable quantum secure direct communication and its security analysis. Laser Phys. Lett. 2019;16:095207.
Eriksson TA, Hirano T, Puttnam BJ, Rademacher G, Luís RS, Fujiwara M, Namiki R, Awaji Y, Takeoka M, Wada N, Sasaki M. Wavelength division multiplexing of continuous variable quantum key distribution and 18.3 tbit/s data channels. Commun. Phys. 2019;2:1-8.
Lo HK, Chau HF. Unconditional security of quantum key distribution over arbitrarily long distances. Science 1999;283:2050-2056.
Boström K, Felbinger T. Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 2002;89:187902.
Shor PW, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 2000;85:441-444.
CAI QY. The ping-pong protocol can be attacked without eavesdropping. Phys. Rev. Lett. 2003;91:109801.
Diamanti E, Leverrier A. Distributing secret keys with quantum continuous variables: principle, security and implementations. Entropy 2015;17:6072-6092.
Han X, Chang X. A chaotic digital secure communication based on a modified gravitational search algorithm filter. Info. Sci. 2012;208:14-27.
Lin JS, Huang CF, Liao TL, Yan JJ. Design and implementation of digital secure communication based on synchronized chaotic systems. Dig. Sig. Proc. 2010;20:229-237.
Moskalenko OI, Koronovskii AA, Hramov AE. Generalized synchronization of chaos for secure communication: Remarkable stability to noise. Phys. Lett. A 2010;374:2925-2931.
Tse KK, Ng RM, Chung HH, Hui SR. An evaluation of the spectral characteristics of converters with chaotic carrier-frequency modulation. IEEE Trans. Ind. Elec. 2003;50:171-182.
He G, Zhu J, Zeng G. Quantum secure communication using continuous variable Einstein-Podolsky-Rosen correlations. Phys. Rev. A 2006;73:012314.
Reid MD. Quantum cryptography with a predetermined key, using continuous-variable Einstein-Podolsky-Rosen correlations. Phys. Rev. A 2000;62:062308.
Ottaviani C, Pirandola S. General immunity and superadditivity of two-way Gaussian quantum cryptography. Sci. Rep. 2016;6:22225.
Krivolapov Y, Fishman S, Ott E, Antonsen TM. Quantum chaos of a mixed open system of kicked cold atoms. Phys. Rev. E 2011;83:016204.
Rarity JG, Gorman PM, Tapster PR. Secure key exchange over 1.9 km free-space range using quantum cryptography. Elec. Lett. 2001;37:512-514.
Jensen JH. Quantum corrections for chaotic scattering. Phys. Rev. A 1992;45:8530-8535.
Badr A, Fahmy A. A proof of convergence for ant algorithms. Info. Sci. 2004;160:267-279.
Paul H. Quantum-mechanical long-range correlations generated in optical beam-splitting. Optica Acta 1981;28:1-4.
Maurer UM. Secret key by public discussion from common information. IEEE Trans. Info. Theor. 1993;39:733-742.
Sun Y, Cao J, Feng G. An adaptive chaotic secure communication scheme with channel noises. Phys. Lett. A 2008;372:5442-5447.
Li S, Álvarez G, Chen G, Mou X. Breaking a chaos-noise-based secure communication scheme. Chaos 2005;15:013703.
Lucamarini M, Mancini S. Secure deterministic communication without entanglement. Phys. Rev. Lett. 2005;94:140501.
Grosshans F, Grangier P. Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 2002;88:057902.
Wang K, Ding DS, Zhang W, He QY, Guo GC, Shi BS. Experimental demonstration of Einstein-Podolsky-Rosen entanglement in rotating coordinate space. Sci. Bull. 2020;65:280-285.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Advanced Journal of Science and Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License (CC-BY 4.0).