DFT Approach on SiC Nanotube for NO2 Gas Pollutant Removal
DOI:
https://doi.org/10.22034/labinsilico21021038Keywords:
Silicon carbide, Nanotube, NO2, DFT, Adsorption, Pollutant, Gas removalAbstract
This work was performed to investigate removal process of nitrogen dioxide (NO2) gas pollutant by its adsorption at the surface of a representative silicon carbide (SiC) nanotube through density functional theory (DFT) calculations. Singular models were optimized first and bimolecular models were optimized again to achieve complex formations. Two models of N@SiC and O@SiC were obtained regarding the initial starting position of NO2 from N site or O site towards the tubular surface. The results indicate that the strength of O@SiC complex could be more favorable than N@SiC complex in terms of energy and distance. Further analyses of frontier molecular orbitals showed the effects of such complex formations on the original energy levels in addition to values of their gap and average. The obtained values of atomic scale quadrupole coupling constants (Qcc) showed the effects of such complex formation on the atoms of NO2 gas providing information about the reason of Si-N and Si-O interacting configuration. As a consequence, the results of this work showed very well the benefit of using such bimolecular complex formation for removal of NO2 gas pollutant by means of its adsorption at the SiC nanotube surface.
References
Tavallali P, Gharibi H, Singhal M, Schweizer D, Cisneros R. A multi-pollutant model: a method suitable for studying complex relationships in environmental epidemiology. Air Quality, Atmosphere & Health. 2020;13:645-657.
Kim KH, Kumar P, Szulejko JE, Adelodun AA, Junaid MF, Uchimiya M, Chambers S. Toward a better understanding of the impact of mass transit air pollutants on human health. Chemosphere. 2017;174:268-279.
Kallel A, Ksibi M, Dhia HB, Khélifi N. Pollutant removal and the health effects of environmental pollution. Environmental Science and Pollution Research volume. 2020;27:23375-23378.
Taran M, Safaei M, Karimi N, Almasi A. Benefits and application of nanotechnology in environmental science: an overview. Biointerface Research in Applied Chemistry. 2021;11:7860-7870.
Mirzaei M. Nanotechnology for science and engineering. Advanced Journal of Science and Engineering. 2020;1:67-68.
Pagar T, Ghotekar S, Pansambal S, Pagar K, Oza R. Biomimetic synthesis of CuO nanoparticle using Capparis decidua and their antibacterial activity. Advanced Journal of Science and Engineering. 2020;1:133-137.
Ulfat I, Ahmed SA, Iqbal SM, Kamaluddin S, Mehmood Z, Kanwal S. Synthesis and characterization of gold nanoparticles. Advanced Journal of Science and Engineering. 2020;1:48-51.
Ghotekar S, Pagar K, Pansambal S, Murthy HA, Oza R. A review on eco-friendly synthesis of BiVO4 nanoparticle and its eclectic applications Advanced Journal of Science and Engineering. 2020;1:106-112.
Harismah K, Ozkendir OM, Mirzaei M. Lithium adsorption at the C20 fullerene-like cage: DFT approach. Advanced Journal of Science and Engineering. 2020;1:74-79.
Faramarzi R, Falahati M, Mirzaei M. Interactions of fluorouracil by CNT and BNNT: DFT analyses. Advanced Journal of Science and Engineering. 2020;1:62-66.
Saedi L, Javanshir Z, Khanahmadzadeh S, Maskanati M, Nouraliei M. Determination of H2S, COS, CS2 and SO2 by an aluminium nitride nanocluster: DFT studies. Molecular Physics. 2020;118:e1658909.
Rostami Z, Maskanati M, Khanahmadzadeh S, Dodangi M, Nouraliei M. Interaction of nitrotyrosine with aluminum nitride nanostructures: a density functional approach. Physica E. 2020;116:113735.
Fallahpour F, Gorgani SS, Nouraliei M. Boron carbide nanoclusters as H2 and N2 gases nanosensors: theoretical investigation. Indian Journal of Physics. 2016;90:931-936.
Gorgani SS, Nouraliei M, Gorgani SS. Heterogeneous C16Zn8O8 nanocluster as a selective CO/NO nanosensor: computational investigation. International Journal of Environmental Science and Technology. 2016;13:1573-1580.
Ariaei S. DFT approach on arsine and phosphine gases adsorption at the surface of B16C16 nanocluster. Lab-in-Silico. 2020;1:44-49.
Düz B, Elbistan CK, Ece A, Sevin F. Application of carbon arc?generated Mo?and W?based catalyst systems to the ROMP of norbornene. Applied Organometallic Chemistry. 2009;23:359-364.
Ece A, Pejin B. A computational insight into acetylcholinesterase inhibitory activity of a new lichen depsidone. Journal of Enzyme Inhibition and Medicinal Chemistry. 2015;30:528-532.
Nouri A, Mirzaei M. DFT calculations of B-11 and N-15 NMR parameters in BN nanocone. Journal of Molecular Structure: THEOCHEM. 2009;913:207-209.
Mirzaei M. A computational NMR study of boron phosphide nanotubes. Zeitschrift für Naturforschung A. 2010;65:844-848.
Mirzaei M. Science and engineering in silico. Advanced Journal of Science and Engineering. 2020;1:1-2.
Zahedi H, Yousefi M, Mirzaei M. DFT investigation of AlP-doped BN nanotube for CO gas capturing. Lab-in-Silico. 2020;1:38-43.
Mirzaei M. Making sense the ideas in silico. Lab-in-Silico. 2020;1:31-32.
Iijima S. Carbon nanotubes: past, present, and future. Physica B. 2002;323:1-5.
Mirzaei M, Mirzaei M. SiC nanotubes: DFT calculations of 29 Si and 13 C NMR properties. Monatshefte für Chemie. 2010;141:941-943.
Mirzaei M, Mirzaei M. The B-doped SiC nanotubes: a computational study. Journal of Molecular Structure: THEOCHEM. 2010;953:134-138.
Harismah K, Mirzaei M, Sahebi H, Gülseren O, Rad AS. Chemically uracil-functionalized carbon and silicon carbide nanotubes: computational studies. Materials Chemistry and Physics. 2018;205:164-170.
Mirzaei M, Mirzaei M. A computational study of atomic oxygen-doped silicon carbide nanotubes. Journal of Molecular Modeling. 2011;17:527-531.
Allen RW, Amram O, Wheeler AJ, Brauer M. The transferability of NO and NO2 land use regression models between cities and pollutants. Atmospheric Environment. 2011;45:369-378.
Gamon LF, Wille U. Oxidative damage of biomolecules by the environmental pollutants NO2• and NO3•. Accounts of Chemical Research. 2016;49:2136-2145.
Hesterberg TW, Bunn WB, McClellan RO, Hamade AK, Long CM, Valberg PA. Critical review of the human data on short-term nitrogen dioxide (NO2) exposures: evidence for NO2 no-effect levels. Critical Reviews in Toxicology. 2009;39:743-781.
Goglio P, Williams AG, Balta-Ozkan N, Harris NR, Williamson P, Huisingh D, Zhang Z, Tavoni M. Advances and challenges of life cycle assessment (LCA) of greenhouse gas removal technologies to fight climate changes. Journal of Cleaner Production. 2020;244:118896.
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09 program. Gaussian Inc., Wallingford, CT. 2009.
Osuna S, Swart M, Sola M. Dispersion corrections essential for the study of chemical reactivity in fullerenes. The Journal of Physical Chemistry A. 2011;115:3491-3496.
Mirzaei M, Nouri A, Giahi M, Meskinfam M. Computational NQR study of a boron nitride nanocone. Monatshefte für Chemie. 2010;141:305-307.
Seif A, Mirzaei M, Aghaie M, Boshra A. AlN nanotubes: a DFT study of Al-27 and N-14 electric field gradient tensors. Zeitschrift für Naturforschung A. 2007;62:711-715.
Mirzaei M. Hydrogen bond interactions of nucleobases: a quick review. Lab-in-Silico. 2020;1:61-66.
Mirzaei M, Mirzaei M. A DFT study of N-doped AlP nanotubes. Monatshefte für Chemie. 2011;142:115-118.
Aramideh M, Mirzaei M, Khodarahmi G, Gülseren O. DFT studies of graphene-functionalised derivatives of capecitabine. Zeitschrift fur Naturforschung A. 2017;72:1131-1138.
Mirzaei M, Gulseren O. DFT studies of CNT-functionalized uracil-acetate hybrids. Physica E. 2015;73:105-109.
Giahi M, Mirzaei M, Meskinfam M, Yousefi M. Density functional studies of the fluorine-terminated boron nitride nanotubes through computations of quadrupole coupling constants. Computational and Theoretical Chemistry. 2011;977:29-33.
Mirali M, Jafariazar Z, Mirzaei M. Loading tacrine Alzheimer’s drug at the carbon nanotube: DFT approach. Lab-in-Silico. 2021;2:3-8.
Moezi E, Mirzaei M. Graphene scaffold for tioguanine delivery: DFT approach. Lab-in-Silico. 2021;2:25-29.
Ozkendir OM. Heat treatment calculations of CaTiO3 material to probe the oxygen non-stoichiometry. Lab-in-Silico. 2021;2:20-24.
Mousanasab B, Mirzaei M. PNA-CNT interacting system: in silico investigation of nanocarbon sensors for PNA detection. Lab-in-Silico. 2021;2:15-19.
Kakaei A, Mirzaei M. Cyclophosphamide@CNT: in silico exploration of nano drug delivery system. Lab-in-Silico. 2021;2:9-14.
Idris MO, Adeniji SE, Habib K, Adeiza AA. Molecular docking of some novel quinoline derivatives as potent inhibitors of human breast cancer cell line. Lab-in-Silico. 2021;2:30-37.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Lab-in-Silico
This work is licensed under a Creative Commons Attribution 4.0 International License.