DFT Investigation of AlP-Doped BN Nanotube for CO Gas Capturing
DOI:
https://doi.org/10.22034/labinsilico20012038Keywords:
Boron nitride, Aluminum, Phosphorous, Carbon monoxide, Gas capturing, DFTAbstract
Density functional theory (DFT) calculations were performed to investigate monoxide carbon (CO) gas capturing at the surface of aluminum phosphorous (AlP) doped boron nitride (BN) nanotube to create CO@AlPBN model. All singular models of this work were optimized first to obtain minimized energy structures. Subsequently, the CO capturing was explored in an additional optimization process at the surface of AlPBN model. Geometrical and electronic properties were evaluated for the optimized models to achieve the purpose of this work. The results indicated that the AlPBN model could work better than BN model for contributing to interactions with CO gas. The obtained results of capturing process approved this achievement. For detection of the gas captured model, UV spectrum could help by shifting the peak of CO@AlPBN model to longer wavelengths than raw AlPBN model. And finally, the AlPBN model could be considered for further investigations for the CO gas capturing purposes.
References
Iijima S. Synthetic nano-scale fibrous matrix. Nature. 1991;56:354-358.
Faramarzi R, Falahati M, Mirzaei M. Interactions of fluorouracil by CNT and BNNT: DFT analyses. Adv J Sci Eng. 2020;1:62-66.
Pander A, Takano K, Hatta A, Nakajima M, Furuta H. Shape-dependent infrared reflectance properties of CNT forest metamaterial arrays. Optics Exp. 2020;28:607-625.
Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zettl A. Boron nitride nanotubes. Science. 1995;269:966-967.
Masumeh F, Jamilaldin FS, Mahmood FS. A mini-review on dispersion and functionalization of boron nitride nanotubes. J Nanostruct Chem. 2020;10:265-274.
Mirzaei M, Hadipour NL, Seif A, Giahi M. Density functional study of zigzag BN nanotubes with equivalent ends. Physica E. 2008;40:3060-3063.
Nouri A, Mirzaei M. DFT calculations of B-11 and N-15 NMR parameters in BN nanocone. J Mol Struct THEOCHEM. 2009;913:207-209.
Mirzaei M, Hadipour NL. Density functional calculations of 14N and 11B NQR parameters in the H-capped (6, 0) and (4, 4) single-walled BN nanotubes. Physica E. 2008;40:800-804.
Mirzaei M, Mirzaei M. A computational study of oxygen-termination of a (6, 0) boron nitride nanotube. Monatsh Chem. 2010;141:491-494.
Mirzaei M, Mirzaei M. Electronic structure of sulfur terminated zigzag boron nitride nanotube: A computational study. Solid State Sci. 2010;12:1337-1340.
Mirzaei M, Meskinfam M. Computational studies of effects of tubular lengths on the NMR properties of pristine and carbon decorated boron phosphide nanotubes. Solid State Sci. 2011;13:1926-1930.
Mirzaei M, Mirzaei M. The B-doped SiC nanotubes: A computational study. J Mol Struct THEOCHEM. 2010;953:134-138.
Mirzaei M, Mirzaei M. The C-doped AlP nanotubes: A computational study. Solid State Sci. 2011;13:244-250.
Mirzaei M. The NMR parameters of the SiC-doped BN nanotubes: a DFT study. Physica E. 2010;42:1954-1957.
Mirzaei M, Hadipour NL, Abolhassani MR. Influence of C-doping on the B-11 and N-14 quadrupole coupling constants in boron-nitride nanotubes: A DFT study. Z Naturforsch A. 2007;62:56-60.
Mirzaei M. Calculation of chemical shielding in C-doped zigzag BN nanotubes. Monatsh Chem. 2009;140:1275-1278.
Han T, Nag A, Mukhopadhyay SC, Xu Y. Carbon nanotubes and its gas-sensing applications: A review. Sens Actuat A. 2019;291:107-143.
Weaver LK. Carbon monoxide poisoning. Under Hyper Med. 2020;47:151-169.
Debataraja A, Septiani NL, Yuliarto B, Sunendar B, Abdullah H. High performance of a carbon monoxide sensor based on a Pd-doped graphene-tin oxide nanostructure composite. Ionics. 2019;25:4459-4468.
Zahedi E, Yari M, Bahmanpour H. Adsorption of carbon monoxide on boroxol-ring-doped zigzag boron nitride nanotube: Electronic study via DFT. Eur Phys J Plus. 2016;131:1-3.
Mirzaei M. Effects of carbon nanotubes on properties of the fluorouracil anticancer drug: DFT studies of a CNT-fluorouracil compound. Int J Nano Dimens. 2013;3:175-179.
Mirzaei M, Yousefi M. Computational studies of the purine-functionalized graphene sheets. Superlatt Microstruct. 2012;52:612-617.
Mirzaei M, Kalhor HR, Hadipour NL. Covalent hybridization of CNT by thymine and uracil: A computational study. J Mol Model. 2011;17:695-699.
Mirzaei M. A computational NMR study of boron phosphide nanotubes. Z Naturforsch A. 2010;65:844-848.
Tahmasebi E, Shakerzadeh E. Potential application of B40 fullerene as an innovative anode material for Ca-ion batteries: In silico investigation. Lab-in-Silico. 2020;1:16-20.
Harismah K, Ozkendir OM, Mirzaei M. Lithium adsorption at the C20 fullerene-like cage: DFT approach. Adv J Sci Eng. 2020;1:74-79.
Gunaydin S, Alcan V, Mirzaei M, Ozkendir OM. Electronic structure study of Fe substituted RuO2 semiconductor. Lab-in-Silico. 2020;1:7-10.
Samadi Z, Mirzaei M, Hadipour NL, Khorami SA. Density functional calculations of oxygen, nitrogen and hydrogen electric field gradient and chemical shielding tensors to study hydrogen bonding properties of peptide group (OC–NH) in crystalline acetamide. J Mol Graph Model. 2008;26:977-981.
Mirzaei M, Hadipour NL, Ahmadi K. Investigation of C–H…OC and N–H…OC hydrogen-bonding interactions in crystalline thymine by DFT calculations of O-17, N-14 and H-2 NQR parameters. Biophys Chem. 2007;125:411-415.
Mirzaei M, Gülseren O, Hadipour N. DFT explorations of quadrupole coupling constants for planar 5-fluorouracil pairs. Comput Theor Chem. 2016;1090:67-73.
Harismah K, Mirzaei M. Steviol and iso-steviol vs. cyclooxygenase enzymes: In silico approach. Lab-in-Silico. 2020 ;6:11-15.
Yaghoobi R, Mirzaei M. Computational analyses of cytidine and aza-cytidine molecular structures. Lab-in-Silico. 2020;1:21-25.
Partovi T, Mirzaei M, Hadipour NL. The C–H..O Hydrogen bonding effects on the 17O electric field gradient and chemical shielding tensors in crystalline 1-methyluracil: A DFT study. Z Naturforsch A. 2006;61:383-388.
Ozkendir OM. Temperature dependent XAFS study of CrFe2O4. Lab-in-Silico. 2020;1:33-37.
Agil H, Akduran N. Structural, electrical and magnetic properties of FeO added GdBaCuO superconductors. Adv J Sci Eng. 2020;1:122-127.
Mirzaei M. Science and engineering in silico. Adv J Sci Eng. 2020;1:1-2.
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09 Package Program, Revision A.01, Gaussian. Inc., Wallingford CT. 2009.
Bagheri Z, Mirzaei M, Hadipour NL, Abolhassani MR. Density functional theory study of boron nitride nanotubes: calculations of the N-14 and B-11 nuclear quadrupole resonance parameters. Journal of Comput Theor Nanosci. 2008;5:614-618.
Bodaghi A, Mirzaei M, Seif A, Giahi M. A computational NMR study on zigzag aluminum nitride nanotubes. Physica E. 2008;41:209-212.

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Lab-in-Silico

This work is licensed under a Creative Commons Attribution 4.0 International License.