Temperature Dependent XAFS Study of CrFe2O4
DOI:
https://doi.org/10.22034/labinsilico20012033Keywords:
Thermoelectric material, Metal oxide, Absorption spectroscopy, Transition metalAbstract
CrFe2O4 (CFO) is a multifunctional magnetic, optoelectronic, and energy conversion material with research interest of current technology. The aim of the study was to test the CFO material against heat treatment and to analyze the electronic and crystal response when the material exposed to heat. To this aim, crystal and electronic properties of CFO material were investigated by x-ray absorption fine structure (XAFS) spectroscopy technique calculations for temperatures of 300, 373, 423, 473, 523, and 573 K. According to increasing the temperature, not so high reaction has been determined in Fe coordination. However, Cr atom has been affected by the temperature more than the Fe atoms. The obtained data at 523 K have been found the most fascinating for analysis.
References
Gunaydin S, Alcan V, Mirzaei M, Ozkendir OM. Electronic structure study of Fe substituted RuO2 semiconductor. Lab-in-Silico. 2020;1:7-10.
Ozkendir OM. Structural and magnetic study of CuxFeCr1?xO2 oxides under high external magnetic fields. J Elec Mater. 2013;42:1055-1062.
Miedema PS, De Groot MF. The iron L edges: Fe 2p x-ray absorption and electron energy loss spectroscopy. J Elec Spec Rel Phe. 2013;187:32-48.
Takahashi H, Motegi Y, Tsuchigane R, Hasegawa M. Pressure effect on the antiferromagnetic transition temperature in CuFeO2. J Magn Magn Mater. 2004;272:216-217.
Ozkendir OM. The electronic structure study of Fe L3 edge in CuFeO2. J Optoelec Adv Mater Rapid Commun. 2009;3:586-591
Scafetta MD, Yang Z, Spurgeon SR, Bowden ME, Kaspar TC, Heald SM, Chambers SA. Epitaxial growth and atomic arrangement in Fe2CrO4 on crystal symmetry matched (001) MgAl2O4. J Vac Sci Technol A. 2019;37:031511.
Scafetta MD, Kaspar TC, Bowden ME, Spurgeon SR, Matthews B, Chambers SA. Reversible oxidation quantified by optical properties in epitaxial Fe2CrO4+? Films on (001) MgAl2O4. ACS Omega. 2020;5:3240-3249.
Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Cryst. 2011;44:1272-1276.
Ankudinov AL, Ravel B, Rehr JJ, Conradson SD. Relativistic calculations of spin-dependent x-ray-absorption spectra. Phys Rev B. 1990; 56: R1712.
Ozkendir OM. Electronic structure study of Sn-substituted InP semiconductor. Adv J Sci Eng. 2020;1:7-11.
Ravel B, Newville M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for x-ray absorption spectroscopy using IFEFFIT. J Synch Rad. 2005;12:537-541.
Mirzaei M. Science and engineering in silico. Adv J Sci Eng. 2020;1:1-2.
Mirzaei M. Lab-in-Silico: an international journal. Lab-in-Silico. 2020;1:1-2.
Harismah K, Ozkendir OM, Mirzaei M. Lithium adsorption at the C20 fullerene-like cage: DFT approach. Adv J Sci Eng. 2020;1:74-79.
Arjangi A, Soleimanimehr H, Mirzaei M. Simulation of rock drilling process using smoothed-particle hydrodynamics method. Adv J Sci Eng. 2020;1:52-58.
Jahangir M, Iqbal ST, Shahid S, Siddiqui IA, Ulfat I. MATLAB simulation for teaching projectile motion. Adv J Sci Eng. 2020;1:59-61.
Faramarzi R, Falahati M, Mirzaei M. Interactions of fluorouracil by CNT and BNNT: DFT analyses. Adv J Sci Eng. 2020;1:62-66.
Mirzaei M. The NMR parameters of the SiC-doped BN nanotubes: a DFT study. Physica E. 2010;42:1954-1957.
Partovi T, Mirzaei M, Hadipour NL. The C–H•••O hydrogen bonding effects on the 17O electric field gradient and chemical shielding tensors in crystalline 1-methyluracil: A DFT Study. Z Naturforsch A. 2006;61:383-388.
Mirzaei M. A computational NMR study of boron phosphide nanotubes. Z Naturforsch A. 2010;65:844.
Agil H, Akduran N. Structural, electrical and magnetic properties of FeO added GdBaCuO superconductors. Adv J Sci Eng. 2020;1:122-127.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Lab-in-Silico
This work is licensed under a Creative Commons Attribution 4.0 International License.