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I N T R O D U C T I O N .  Since the early days of carbon 

nanotube (CNT) introduction by Iijima, considerable 

attempts have been dedicated to explore various 

features and applications for this novel material.1-3 

Soon after, existence of other types of nanostructures 

have been proposed in both of atomic components of 

geometrical shapes.4-6 One of the important goals of 

such typical scientific activity was to develop 

applications of nanostructure in biological media 

especially for drug delivery purposes.7-9 To this aim, 

several other features were investigated to evaluate 

such activity of nanostructures regarding the purposes 

of targeted drug delivery systems and biomedical 

applications.10 Such nano-scaffolds have been seen to 

work as carriers for drugs to increase the efficacy and 

to decrease the unfavorable side effects.11-13 

Graphene, as a well-known, carbon nanostructure, has 
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been expected to play dominant roles in the fields of 

such biomedical applications to deliver drugs up to 

correct targets.14-16 Graphene-based scaffold could 

work as proper surface for adsorption of medicinal 

substances to carry them inside different media.17-19 

Tioguanine is an example of anti-cancer drugs, in which 

its improvement regarding the targeted drug delivery 

processes of saving the health of patients is almost a 

crucial issue.20-22 This drug, which has been also known 

as thioguanine or 6-thioguanine, is a guanine 

nucleobase derivative for medication of several types 

of cancers.23-25 Within this work, employing a 

representative graphene scaffold was explored for 

tioguanine to examine the features of drug 

before/after such complexation process (Fig. 1). To 

achieve this goal, molecular scale calculations were 

performed to optimize model systems to obtain 

A B S T R A C T . Density functional theory (DFT) approach was used to perform molecular scale 
calculations to examine the capability of graphene scaffold for delivery of tioguanine anticancer drug. 
To achieve the purpose, singular models were optimized to provide required components for 
bimolecular tioguanine@graphene complex formation in re-optimization processes. The calculation 
results indicated favorable perpendicular localization of tioguanine to the graphene surface, in which 
evaluated molecular descriptors approved such achievement of bimolecular complex formation. Each 
of frontiers molecular orbitals (HOMO and LUMO) distribution patterns and electrostatic potential 
(ESP) surfaces showed the existence of tioguanine@graphene complex. Finally, the obtained results of 
this work made sense the starting hypothetic idea of graphene scaffold application for delivery of 
tioguanine to be examined more by future practical works. 
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required information for discussing the research topic. 

It is an important point that the computer-based works 

could provide insightful information before or after 

experiments to make sense the ideas properly.26-30 
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Fig. 1: Molecular models of singular and complex systems in different views.  

 

M E T H O D O L O G Y .  Density functional theory (DFT) 

calculations were performed to obtain required 

information to achieve the goal of this work. The B3LYP 

exchange-correlation functional and the 6-31G* basis 

set were employed for performing DFT calculations 

using the Gaussian program.31 First, singular models of 

tioguanine and graphene (Fig. 1) were optimized to 

achieve the minimum energy structures. It is important 

to mention here that coronene (C24H12) could be 

designated for a single-standing structural 

reprehensive of graphene, which was used in this 

work.32-34 Those hydrogen atoms are important for the 

planar sheets in molecular calculations avoiding the 

dangling effects.35 Next, complexation of tioguanine 

and graphene scaffold were done by re-optimizing the 

available singular models in new bimolecular mode. As 

a result, optimized bimolecular complex of 

tioguanine@graphene was achieved regarding the 

obtained minimum energy structure (Fig. 1). 

Subsequently, molecular descriptors of optimized 

models including energy levels of the highest occupied 

and the lowest unoccupied molecular orbitals (HOMO 

and LUMO), dipole moment (DM), adsorption energy 

(AE) and adsorption distance (AD) were evaluated 

(Table 1). Furthermore, HOMO/LUMO distribution 

patterns and electrostatic potential (ESP) surfaces 

were evaluated for better examining the structural 

features (Fig. 2).  

 

Table 1: Molecular descriptors for the optimized systems.* 

Descriptor Tioguanine Graphene Tioguanine@Graphene 

HOMO /eV -5.662 -5.452 -5.298 

LUMO /eV -1.516 -1.411 -1.581 

DM /Debye 1.935 0 1.613 

AE /eV N/A N/A -0.042 

AD /Å N/A N/A 2.498  

2.751 
*See Figs. 1 and 2 for the models description. AE = EComplex – Sum of EComponents.  
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R E S U L T S  &  D I S C U S S I O N .  Within this work, a 

representative graphene scaffold was investigated for 

tioguanine delivery using DFT approach. The model 

systems of this work and the obtained results were all 

summarized in Table 1 and Figs. 1 and 2. It has been 

already mentioned that the molecular scale 

computational works could provide insightful 

information for careful examination of matters at the 

lowest possible scales.36-40 In the first step of this work, 

singular models including tioguanine and graphene 

were optimized to achieve the minimum emery 

structures. Next, parallel optimization calculations 

were performed to achieve the bimolecular 

tioguanine@graphene complex. By doing such steps, 

the models were provided for further analyzing in 

order to reach the goal of this work. As in important 

point shown in Fig. 1, the initial position of tioguanine 

was parallel to the graphene surface; however, the 

optimization processes yielded a complex system with 

tioguanine perpendicular to the surface. Another 

important point was localization of tioguanine almost 

at the center of the surface showing the validity of such 

representative graphene model for examining such 

capability of scaffold for drug delivery processes. The 

energy values of HOMO and LUMO for singular and 

complex models show deviations of level in order to 

employed perturbation of such complex formation 

processes. The changes of each level detected such 

deviations when comparing the results in to singular 

and complex models. Therefore, it could be expected 

that such tioguanine@graphene complex was existed 

regarding the obtained molecular descriptors. The 

values of DM showed deviations of electric charge 

distributions at the molecular system models.  
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Fig. 2: HOMO/LUMO distribution patterns and ESP surface representations. 
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The visual exhibitions of HOMO and LUMO distribution 

patterns and ESP surfaces (Fig. 2) also approved such 

complex formation to make sense the starting 

hypothetic idea. Indeed, frontier orbitals are very much 

important for describing chemical features, in which 

the changes of their level could show the employed 

perturbations to such systems. 

Bimolecular formation of tioguanine@graphene 

complex was investigate more by obtained values of AE 

and AD, in which the results indicated a reasonable 

strength for such complex system regarding the 

obtained value of AE energy and AD distances. Both 

values could indicate physical loading of tioguanine at 

the surface of graphene, as an important factor for 

reversible drug delivery processes. Although the 

physical interactions are weaker than those of 

chemical ones, but their strength are still appropriate 

for adsorption of matters especially in the reversible 

processes. Within the obtained results of this work, the 

perpendicular adsorption of tioguanine to the 

graphene surface was appropriate to achieve the 

minimum energy system of bimolecular complex 

formation. 

 

C O N C L U S I O N .  Within this DFT work, application 

of graphene scaffold for delivery of tioguanine was 

investigated at the molecular scale calculations. Based 

on the obtained results, some remarks could be 

summarized. First, the results indicated that the 

bimolecular tioguanine@graphene complex formation 

was achieved. Second, the favorable localization of 

tioguanine was perpendicular to the graphene surface. 

Third, HOMO and LUMO related molecular descriptors 

approved such complex formation in addition to their 

visual representation and ESP. Fourth, values of AE and 

AD indicated that such complex formation was 

achievable. Fifth, the surface size was appropriate for 

such investigation as the localization of tioguanine was 

optimized to the center of surface. Finally, graphene 

scaffold could be supposed for using in delivery process 

of tioguanine for performing further examinations to 

achieve practical results about confirmation of this 

idea within experiments. 
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