
ADVANCED JOURNAL OF SCIENCE AND ENGINEERING
Summer 2020, Volume 1, Issue 3, Pages 98-103. DOI: 10.22034/AJSE2013098

SciEng

eISSN:  2717-0705

Improvement of Quantum Circuits Using H-U-H Sandwich Technique
with Diagonal Matrix Implementation

Iqra Naz1,, Muhammad Miqdad Khan2

Received: May 23, 2020 / Accepted: June 05, 2020 / Published Online: August 23, 2020

ABSTRACT. Quantum circuits are ideal for most of the
modern world problems. They are more efficient and reliable
for many computations that are a challenge for classical
computers. Beside this they are themselves more complex to
deal with and too much costly to build. Cost is the most
crucial factor for designing or implementation of any circuit
but when it comes to quantum circuits it becomes the most
unavoidable part of design technique. The hadamard-unitary
sandwich technique has an amazing cost reduction potential
in quantum circuits.  In this paper we have discussed about
how H-U-H sandwich technique came up with a break
through minimizing the circuit complexity and played leading
role in cost reduction of quantum circuits by minimizing
number of gates used. This method also helps in achieving
high computation power and efficiency with more feasibility.
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INTRODUCTION

Quantum computing is auspicious strategy to simulate
such systems that cannot be done by classical
computers.1, 2 Quantum circuits are much powerful and
can solve some certain problems with great ease in very
less time such as factoring integers3 whereas super
polynomial classical algorithm solved by using
quantum Shor’s algorithm4 can attack on RSA
cryptosystem.5 Quantum circuit can be defined as a set
of quantum gates performing computations by taking
inputs in qubits and generating outputs. These quantum
gates are used to perform different type of computations
and are interconvertible and replaced with some another
combination to perform same functions. If any Unitary
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Transformation quantum data can be efficiently
approximated arbitrarily well as a sequence of gates in
the set  then we say the set of quantum gates to be
universal.6 These gates can easily be transpiled by using
C-NOT (Cx) gates and hadamard gates with single qubit
rotations. These forms universal gate set as well as any
unitary can be implemented using them. The term
unitary used here is basically a complex analog of real
orthogonal matrix. It can be defined as a matrix whose
inverse equals to its conjugate transpose.  Basically it is
necessary to form an efficient unitary matrix that can
describe quantum algorithms and can be decomposed
into known quantum gates.7, 8

Any quantum circuit (any at all!) can be represented as
a single unitary transformation. This decomposition of
unitary matrix into quantum gates serves as an
optimization problem. In quantum circuits mostly the
gates are replaceable with one another. When the
matrices of two contagious gates are commute we can
easily replace gates with another one. Mostly we use it
in the optimization of reversible gates. The two
contagious gates are replaceable either they are not
applied on same qubit or they are T, S, S†, T†. C-Not
gates do not support optimization directly and mapping
of these gates come up with an added cost in the
circuits.9, 10 In quantum circuit’s transformation, mostly
we have to face two major resistances: complex and
huge search spaces that are itself an open challenge as
well as in circuit simulation high cost becomes
unavoidable too.7 This complexity and high cost is
mostly due to excessive number of quantum gates in the
circuit which can be formed by lesser number of gates
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just by getting the best choice of gates and preferably
the favorable sequencing of these gates. The above
discussed favorable sequencing can also be attained by
using hadamard gates. It also helps to reduce T-depths
as well as T-counts in quantum circuits.9 We used
hadamard gate as it is its own inverse, so applying H-H
anywhere in a circuit won't change the circuit. The
whole reason to do unitary-hadamard multiplication is
that the transpiler is much better at optimizing the
transformed circuit than the original ones. Circuit
decomposition and transformation in this manner leads
to fast compilation and rapid data travelling. So the
decomposed smaller circuits run more efficiently and
rapidly than the larger ones with the same output.
Diagonal alignment of circuit matrices before
decomposition will be an addition to the computational
power to the circuits. One of the objectives of these
matrices includes generation of random states which
can be utilized in long range of quantum applications.
These includes efficient measurements of qubits, gates
fidelities estimation etc. Just because these random

states uses exponential resources therefore the
possibilities also increases exponentially as well as it
increases no. of qubits. Quantum gates set have their
own matrices that are somehow interchangeable. So in
this paper we will discuss the matrices of quantum
circuits and will perform operations on them to form a
better form of diagonal matrix so that we can achieve
their random states and can minimize the original circuit
to very lesser number of possible quantum gates. This
approach will lead to higher efficiency and huge
decrement in circuit costs.
Our study will be proceeding with getting a unitary
matrix and transforming it by using HUH sandwich
technique. We will form a diagonal matrix from the
HUH sandwich matrix to increase computational
power. Later on the matrix will be ready to decompose
so that it will be able to implement by using lesser
number of quantum gates. This method will be less
complex and more cost effective as well as having more
computation power and efficiency too in comparison
with other methods.

Fig. 1: Decomposed unitary(4) circuit.

Fig. 2: H.U decomposed circuit.

Fig. 3: H.U.H decomposed circuit.
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MATERIALS AND METHODS
H-U-H Sandwich Technique
Hadamard gate is known for the superposition of qubits
which leads to the more computation power which is
major factor of quantum circuits. We look for dot
product of hadamard matrix and unitary, we come up
with unitary qubit rotations. We can observe the circuits
in Figs. 1-3. Fig. 1 shows the original circuit of 4X4
unitary matrix. Where, U3 is representing hadamard
gate while other one is representation of C-Not gate.
Fig. 2 is a transformed unitary matrix shown in Fig. 1
formed by dot product of hadamard matrix with unitary
matrix. Fig. 3 is a transformed unitary matrix formed by
the dot product of hadamard-Unitary matrix shown in
Fig. 2 with hadamard matrix, thus forming H-U-H
sandwich. These three circuits shows the qubit rotations
due to this sandwich technique adding more
computation power to the circuit and due to this the
circuit becomes more efficient and fast as well.
Through this approach we managed to minimize the
circuit more than 60% of the original circuit. The main
logic behind this approach is to sandwich our unitary
between two hadamard matrices. Then we managed to
find a diagonal matrix out of this sandwich. This
diagonal matric on decomposition forms a quantum
circuit having more than 60% lesser number of quantum
gates than in the original unitary circuit. Here we have
used qiskit by IBM for quantum circuit simulations.9

Methodology proceeds in the steps described as below.

Forming Unitary Matrix
First, we will form a unitary matrix of 4X4 by the scipy
function. It will generate a random unitary matrix. Fig.
4 shows the random 4X4 matrix formed by importing
unitary_group from stats of Python library scipy.

Transformation of Unitary by H-U-H
The above formed unitary matrix transformed into H-
U-H sandwich by taking dot products of hadamard with
unitary and with hadamard. Fig. 5 shows the
transformed H-U-H matrix by having dot product of
Hadamard matrix with unitary matrix and again with
Hadamard matrix.

Conversion of H-U-H into its Diagonal Matrix
Diagonal matrix has great importance in mathematical
calculations. Here we converted the efficient H-U-H
matrix into its diagonal matrix to minimize the quantum
gates required in original circuit, after diagonalization
we got the diagonalized matrix shown in Fig. 6.

Decomposition and Transpilation of Diagonal Matrix
Above discussed diagonal matrix is then decomposed to
form quantum circuits. After transpilation (source-to-
source compilation) of decomposed matrix we got the
minimized circuit of 3 hadamard and 2 C-Not gates as
represented in Fig. 7 below, which are much lesser than
the original unitary matrix circuit in Fig. 1 having 6
hadamard gates along with 3 C-Not gates.

Fig. 4: Transformed H.U.H matrix.

Fig. 5: H.U.H diagonal matrix.
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Fig. 6: H.U.H diagonal matrix.

Fig. 7: Decomposed H.U.H diagonal matrix circuit.

RESULTS AND DISCUSSION

Study Analytics
From the discussed case study, we can analyze that, in
our case the major problem was the huge complex
circuit with multiple number of gates. It can be much
more critical when it comes to practical implementation
of the circuit. To solve this we formed a new reduced
form of the previous circuit with much lesser number of
gates. In our case we formed 4X4 unitary matrix
through 8 hadamard gates accompanied with 3 C-Not
gates. After implementation of discussed method we
successfully reduced the same circuit and got it with 3
hadamard gates along with 2 C-Not gates. It will be
more and more beneficial for the circuits with larger
number of gates. We used this method to analyze bigger
circuits e.g. for 8X8, 16X16, 32X32, and so on. The
analytics for larger circuits were more amazing then we
expected because shows drastically exponential
reduction in this case.
Graphs of Figs. 8-10 are schematically showing the
comparison of no. of gates used in the circuit for the
formation of unitary matrix before and after
implementation of H-U-H sandwich technique. Fig. 8 is
showing exponential to linear reduction of C-Not gates
used in original circuit as compared to transformed
unitary circuit. Fig. 9 is showing all about hadamard
gates used in the circuit. In contrast, Fig. 10 is
describing the collectively usage of no. of gates for the
implementation of unitary matrix to quantum circuits in
original to transformed circuit.

Fig. 8: Comparison of no. of C-Not gates before and after
reduction.

Fig. 9: Comparison of no. of hadamard gates before and after
reduction.

Fig. 10: Comparison of total no. of gates used in the circuit before
and after reduction.
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Study Findings
During this study we applied this technique to number
of square unitary matrices and came up with the result
that it can be applied to 2n unitary matrices. Where, n is
number of qubits ranging from 1 to infinity. But for
circuit simulation we could only simulate the circuit up
to 26 unitary matrices. The reason behind this constraint
was the limitation of number of pixels that it must be
less than 2^16 in each direction but our case the image
size were too much larger than the limit.
For big picture some snaps of the different unitary
circuits before and after optimizations are provided
a) 2X2 unitary matrix: Figs. 11 and 12 show the

decomposed 2X2 unitary matrix in comparison with
transformed diagonal matrix.

Fig. 11: Decomposed unitary(2) matrix.

Fig. 12: Decomposed H.U.H diagonal
2X2 matrix circuit.

b) 8X8 unitary matrix: Fig. 13 and 14 explain the
observed drastic change as the circuit becomes larger
with multiple no. of gates. These results are also
applicable to 16X16, 32X32, and 64X64 matrices
and so on. Amazingly, efficiency and reduction ratio
increase drastically on higher dimensions.

Fig. 13: Decomposed unitary(8) matrix.

Fig. 14: Decomposed H.U.H diagonal 8X8 matrix circuit.

So we come up with the result that H-U-H sandwich
technique made the circuit efficient with more
computation power. While, diagonalization reduced the
number of quantum gates. H-U-H sandwich method

works like a magic for the most complex circuits with
hundreds or thousands of quantum gates in it. The
decrement in number of gates in the optimized circuits,
compared to the original unitary circuits increase
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exponentially in the larger circuits with greater number
of quantum gates. Due to great decrement of quantum
gates in the circuit, circuit cost is reduced to great extent
and this reduction will also reduce circuit complexity
and will add to efficiency too. This method will
specifically work on orthonormal matrices having
isometry. So during this optimization we must have to
take care about the orthonormality of matrix.

CONCLUSION

Quantum circuits are highly efficient to compute the
tasks which take exponentially much more time and
power to perform in classical computers. But the fact is
quantum circuits itself are more complex and come up

with huge cost.  That is one of the major problems so
that quantum circuits are not more practically in use.
Reason behind our study was to reduce this high
complexity by minimizing the required number of gates
used in the formation of a specific circuit. To do this we
applied hadamard gate matrix and some mathematical
calculations. Finally, we concluded that our H-U-H
sandwich technique along diagonal matrix formation
could result in high computation power by achieving
random qubit states, less complexity with higher
efficiency of circuits. Along with all these minimizing
the number of gates in circuit itself reduced the per
quantum gate costs involved in circuits as an advantage
regarding the economic situation.
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