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ABSTRACT.  The effects carbon nanotube (CNT) and 
boron nitride nanotube (BNNT) have been examined on the 
properties of fluorouracil (FU) anti-cancer drug in CNT-FU 
and BNNT-FU complex formations through density 
functional theory (DFT) calculations. Molecular and atomic 
scale properties have been evaluated for FU in singular and 
complex forms to find possible solution for the mentioned 
problem of this work. Based on the obtained results, BNNT-
FU has been seen almost as a chemical complex versus 
physical CNT-FU complex. Moreover, molecular orbital 
properties approved such type of complex formations for both 
CNT-FU and BNNT-FU. Atomic scale properties also 
indicated many more significant effects for atoms of FU in 
BNNT-FU than CNT-FU, in which the trend could make a 
conclusion that the effects on FU are many more significant 
in BBNT-FU in comparison with CNT-FU. It is worth to note 
that knowing details of interactions is very much important 
for molecular consideration in drug delivery systems. 
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INTRODUCTION 

Since the early days of carbon nanotube (CNT) 
discovery, several works have been dedicated to explore 
different features of this novel material for specific 
applications.1-5 In addition, existence of non-carbon 
based nanostructures has been also investigated, in 
which boron nitride nanotube (BNNT) has been 
introduced as a proper competitor for the already found 
CNT.6-10 Moreover, ionic feature has made BNNT much 
favorable than non-ionic CNT to be dispersed in water 
media.11 By vast variety of electronic and structural 
characteristics of nanotubes, they have been expected to 
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be employed in several types of applications, among 
which drug delivery purposes have been seen as 
emerging applications of such novel structures in living 
systems.12 Interaction details of medicinal molecules 
with nanotubes are very much important to be found 
based on examining the effects of such complex 
structures on the initial properties of medicinal 
compounds.13 To this aim, several attempts have been 
done to find such effects for different medicinal 
compounds in both of computational and experimental 
points of view.14-16 Since cancer itself is still an 
unsolved problem and the anti-cancers are not efficient 
enough yet, investigating advantage of nanostructures 
applications in such drug delivery systems is an 
important task to do.17  
 

 
          Fig. 1: Fluorouracil (FU). 

 
Fluorouracil (FU) (Fig. 1), or 5-fluorouracil, is a 
fluorinated derivative of uracil, which has been 
employed as an anti-cancer for years.18 Despite its 
wonderful therapeutic advantages, considerable 
unwanted side effects are arisen for those patients under 
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treatments with FU.19 Therefore, knowing more about 
electronic and structural properties of FU may help to 
improve its capability for more efficient treatments of 
cancer patients.20, 21 Earlier works have indicated that 
FU could bind to nanostructures through physical and 
chemical interactions making complex systems.22-26 
However, the characters of nanostructure could bring 
different effects for FU during complex formations. In 
this work, representative models of CNT and BNNT 
have been employed as non-ionic and ionic nanotubes 
to investigate details of interaction of FU with them 
(Fig. 2). To achieve the purpose, quantum chemical 
computations have been performed at the molecular 
scale to find the mechanism of such complex formations 
between FU and each of CNT and BNNT. The obtained 
results (Table 1 and 2) have been discussed to evaluate 
a possible response for the major problem of this work: 
how are effects of non-ionic CNT and ionic BNNT on 
the properties of FU? 
 

 

 
Fig. 2: CNT-FU (top) and BNNT-FU (bottom) complexes; C-H 
distance: 2.95 Å in , B-O distance: 1.58 Å. 

 
MATERIALS AND METHODS 

This work has been done employing density functional 
theory (DFT) calculations on molecular systems of FU, 
(4,0) CNT and (4,0) BNNT (Figs. 1 and 2). The 
B3LYP/6-31G* level of theory has been employed for 
calculations using the Gaussian 09 program.27 3D 

models of each of three molecules have been optimized 
first to obtain minimized energy structures. Afterwards, 
the models of CNT-FU and BNNT-FU have been 
optimized to explore complex formations of such hybrid 
systems (Fig. 2). For complex systems, dispersion 
corrections have been considered by IOp(3/124=30) for 
interacting systems.28 Moreover, the basis set 
superposition error (BSSE) has been examined for the 
bi-molecular systems showing almost negligible errors 
to energy values.29 By these processes, models 
descriptors including the highest occupied and the 
lowest unoccupied molecular orbitals (HOMO and 
LUMO), energy gap (EG), dipole moment (DM) and 
binding energy (EB) have been evaluated (Table 1). 
HOMO, LUMO and DM have been directly obtained 
from the output file whereas eqs. (1) and (2) have been 
employed to evaluate EG and EB.  
 

EG = LUMO – HOMO                     (1) 
EB = EComplex – EFU – ECNT/BNNT                    (2) 
 
For further analyses at the atomic scales, chemical 
shielding (CS) descriptors have been calculated for the 
models of optimized FU in singular and complex forms 
to explore the effects of nanotube on the properties of 
attached FU anti-cancer drug (Table 2). To perform 
such calculation, the gauge included atomic orbital 
(GIAO) approach has been used.30 CS properties belong 
to the NMR technique, which is among the most 
powerful material characterization techniques.31 
Interestingly, the NMR properties could be reproduced 
by quantum chemical computations to reveal insightful 
information about the characteristics of matters at the 
atomic scale.32-35 
 
 

RESULTS AND DISCUSSION  

Within this work, we have explored a possible solution 
for this problem about the effects of non-ionic CNT and 
ionic BNNT on the properties of FU, an anticancer drug. 
To this aim, DFT calculations have been performed to 
find the optimized geometries for the investigated 
structures (Figs. 1 and 2) in addition to their atomic and 
molecular scale properties (Tables 1 and 2). It is indeed 
an advantage of computational works to investigate the 
properties of matters at the lowest scale.36, 37 Hereby, 
this advantage has been employed here to investigate 
the characteristic properties of FU in complex with each 
of CNT and BNNT in comparison with the singular 
form.  
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Table 1: Molecular descriptors. 
Model Stoichiometry HOMO 

(eV) 
LUMO 

(eV) 
EG  
(eV) 

DM  
(Debye) 

EB 
(kcal/mol) 

FU C4H3FN2O2 -6.79 -1.38 -5.41 3.90 N/A 
CNT1-FU C36H11FN2O2 -5.49 -3.38 -2.11 6.49 -5.88 
BNNT-FU C4H11B16FN18O2 -6.21 -2.72 -3.49 9.86 -21.55 

See Figs. 1 and 2 for details. 

Examining the panels of Fig. 2 indicates that the 
interacting surface for FU is very much important, in 
which it interacts with CNT in physical mode but it 
interacts with BNNT in chemical mode. The importance 
of non-ionic/ionic surface could be very well seen here 
by the type of interaction between FU and each of 
nanotubes. The results of Table 1 also show that the 
strength of BNNT-FU is four times higher than that of 
CNT-FU, in which the values of EB are -21.55 and -
5.88 kcal/mol. The values of HOMO and LUMO 
indicate the orbital configurations are changed because 
of complex formations for FU in both of singular and 
complex forms. The trend approves the complex 
formation by changing the orbital configurations. 
Moreover, the values of EG also indicate that the 
BNNT-FU could be considered as more stable complex 
than CNT-FU, in which the absolute value of EG is 
larger for the former complex than the latter one. The 
values of DM also indicate the effects of complex 
formations on molecular properties, in which the 
BNNT-FU complex could provide better situations of 
interactions with other molecular systems regarding 
such ability for the CNT-FU complex. As a concluding 
remark of this part, chemical complex formation has 
been occurred for BNNT-FU versus physical complex 
formation for CNT-FU and the molecular descriptors 
have approved such formation condition. 
 

Table 2: Atomic CS descriptors for FU. 
Atom  Isolated FU CNT-FU BNNT-FU 
N1 141 134 130 
C2 53 52 56 
N3 98 98 94 
C4 42 42 34 
C5 52 53 56 
C6 72 69 66 
H1 27 25 26 
O2 29 35 10 
H3 26 26 20 
O4 59 49 83 
F5 352 356 352 
H6 25 25 25 
See Figs. 1 and 2 for details. The values are in ppm. 

 

Atomic scale CS descriptors have been obtained (Table 
2 and Figs. 1 and 2) for the atoms of FU in singular and 
complex forms to explore the effects of nanotube on the 
initial atomic characteristics of FU. A quick look at the 
results indicates that the atoms of FU detect different 
electronic environment regarding their position in the 
pyrimidine heterocyclic ring. In addition, the complex 
formations have significant effects on FU properties in 
both of CNT-FU and BNNT-FU complexes, in which 
the effects are many more significant for the atomic 
properties of FU of latter complex. Since the CS 
properties are generated at the electronic sites of atoms, 
they could very well detect any perturbations to the 
electronic properties of matters at the atomic scale [38]. 
Hereby, the atomic effects are very much obvious for 
FU in the complexes, especially BNNT-FU. O4 is that 
atom make connection between FU and BNNT, in 
which its own property detects significant effects of 
such perturbation. Interestingly, the effects are not only 
limited to O4 but other atoms of FU also detect 
significant effects. The trend means that the properties 
of one atom in a molecule could make different 
conditions for other molecules, which are very much 
obvious of atoms of FU in BNNT-FU complex. For 
example, N1 is in the opposite side of O4 in the FU 
molecule but it detects notable effects of nanotube 
existence in BNNT-FU. For CNT-FU, the atoms of FU 
also detect the effects of nanotube but almost slighter 
than those of BNNT-FU complex. As a final remark, the 
atomic scale properties of FU are significantly changed 
in BBNT-FU but they detect slighter changes in CNT-
FU complex meaning that the effects of BNNT are 
many more significant for the properties of FU in 
comparison with CNT. 
 
CONCLUSION 

Based on performed DFT calculation, molecular and 
atomic scale properties have been obtained to discuss 
about possible solution of this problem: how are effects 
of non-ionic CNT and ionic BNNT on the properties of 
FU? Based on the results, some trends have been 
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summarized. First, BNNT-FU is almost a chemical 
complex versus physical CNT-FU complex. Second, 
the binding strength of BNNT-FU is much higher than 
that of CNT-FU. Third, HOMO and LUMO properties 
of FU detect significant effects of complex formations 
in both complexes but showing more stability for 
BNNT-FU than CNT-FU. Fourth, the atomic scale CS 
properties indicated many more significant effects for 
atoms of FU in BNNT-FU than CNT-FU. And finally, 
the properties of FU detect many more significant 

effects in BBNT-FU in comparison with CNT-Fu 
meaning the importance of knowing details of 
interactions for molecular consideration in drug 
delivery systems.  
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