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ABSTRACT.  Dynamics driven a single bubble is known 
to be a complex phenomenon indicative of a highly active 
nonlinear as well as chaotic behavior. Based on theoretical 
aspects, so much information are available in this case. 
Within this current research work, a method based on Slave-
Master Feedback (SMF) to suppress chaotic oscillations was 
introduced. In the Slave-Master Feedback control process, the 
spherical cavitation bubble as the slave system is coupled 
with a dynamical system as the master, so its implementation 
becomes quite simple and similar statements can be made for 
the high dimensional cases. In order, we perturbed the 
fundamental acoustic energy by applying the proposed 
technique. A great virtue of this method is its flexibility. Also, 
unlike other chaos control techniques, there is no need to 
know more than one variable. The problem of the transition 
to chaos in deterministic systems has been the subject of 
much interest, and, for low dimensional dynamics, it was 
found that the transition most often occurs via a small number 
of often observed routes. The relation between this method 
and frequency ultrasonic irradiation is correlated to prove its 
applicability in applications involving cavitation phenomena. 
The results indicated its strong impact on reducing the chaotic 
oscillations to regular ones. Due to the importance of topic in 
various aspects, investigation of the efficacy of the slave-
master feedback control method in a system of interacting 
bubbles could be one of the subjects for future studies. 
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INTRODUCTION 

Mathematically, all nonlinear dynamical systems with 
more than two degrees of freedom can display chaos 
and, therefore, become unpredictable over longer time 
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scales. The problem of the transition to chaos in 
deterministic systems has been the subject of much 
interest, and, for low dimensional dynamics, it has been 
found that this transition most often occurs via a small 
number of often observed routes (e.g., period doubling 
and intermittency).  A gas bubble driven in motion by 
ultrasound is an example of a system with highly 
nonlinear properties in which deterministic chaos 
manifests itself.  This phenomenon occurs when a high 
amplitude, high frequency sound is applied to the 
liquid.1-3 The emergence of cavitation bubble structures 
is a common feature of ultrasound applications in 
liquids. The study of their behavior has recently been 
the center of attention. It is believed that this 
phenomenon exhibits highly complex and chaotic 
dynamics both experimentally4-6 and numerically.7-9 
One of the key factors in cavitation bubble dynamics is 
bubble-bubble interaction. bubble-bubble and bubble-
fluid interaction play an important role in a number of 
natural phenomena, such as sound propagation in the 
ocean, the exchange of gases and heat between the 
oceans and the atmosphere, and explosive volcanic 
eruptions.  After the generation of the cavitation bubble 
in the liquid they begin their nonlinear oscillations. 
In recent years, the modern methods of nonlinear 
dynamical systems analysis have led to a substantial 
improvement in understanding of the nonlinear 
behavior of bubbles and clusters of bubbles.10-12 The 
destructive nature of cavitation bubble is widely 
reported in literature, such as hydrodynamic cavitation, 
shock wave lithotripsy, sonofusion, in material science, 
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sonoluminescence and sonochemistry.6, 13-20 Macdonald 
et al.21 analyzed the bifurcation structure of isolated and 
interacting encapsulated microbubbles as used in 
medical diagnostic imaging. So, it is important to 
establish methods to study the bubble radial stability in 
different conditions.  In the above mentioned 
applications, an optimum employment of bubbles 
entails that chaotic oscillations be reduced, because 
when the bubble motion gets chaotic, its behavior 
becomes unpredictable and very hard to deal with. 
Therefore, reducing chaotic oscillations could be the 
first step in controlling the bubble dynamics by 
providing more accurate predictions. 
The main argument of this paper is the stability analysis 
of a spherical cavitation bubble and the selection of 
most suitable control parameter for establishing an 
adequate control strategy based on the slave-master 
feedback.22 In applications involving cavitation, the 
parameters like the viscosity, surface tension or the 
diameter of the bubble are determined by the media and 
type of the application. Consequently, the only 
remaining parameter that is to perturb for stabilizing the 
motion is the forcing term. Hence, parameter such as 
pressure is used as control parameter to obtain different 
dynamical regimes through plotting the Lyapunov 
exponent spectra, bifurcation diagrams. After selection 
the frequency as suitable control parameter of the 
system, this parameter as a discrete time dynamical 
system is coupled with the bubble. 
 
MATERIALS AND METHODS 

The Bubble Model 
The bubble model used for the numerical simulation 
was derived,7 which is a modified model of Keller-
Miksis equation23 formulated by Prosperetti24 and is 
given by eq. (1): 
 

 
 

(1) 

with 
  

 
In this equation R is the bubble radius, R0 is the initial 
radius, Ṙ is the bubble velocity, ܴ̈ is the bubble wall 
acceleration, f is the frequency of the driving sound 
field, Pa is the amplitude of the driving pressure, Pstat is 
the static ambient pressure, Pν is the vapor pressure, σ is 
the surface tension, ρ is the liquid density, µ is the 
viscosity, c is the sound velocity, and k is the polytropic 

exponent of the gas in the bubble. The model was solved 
for bubble using the values of the physical constants 
shown in Table. 1. Between control parameters Pa and 
R0 are the most important ones and the correspondent 
values are stated. 
 
Stability Analysis 
The presented model has the capability to be used for 
determining the behavior of a bubble. However the 
effects of parameters mentioned above are studied for a 
bubble in a wide range of parameter domain.  Through 
analyzing the results more comprehensive knowledge 
would be available about the complex and nonlinear 
dynamics of bubble. For stability analysis, it is 
convenient to transform the second-order differential 
eq. (1) into an autonomous system of first-order 
differential eq. (2) of the following form:21, 25 

 
 

(2) 

 

or equivalently:  

 

(3) 

 
where θ is the cyclic variable, V(x, y, θ) an autonomous 
vector field and α(R0, Pa, Pstat, Pν, ν, µ, ρ, c, k) is an 
element of the parameter space. This system generates 
a flow Φ={ΦT} on the phase space M=R2∗S and there 
exist a global map: 
 

 
 

with T= , θ0 is a constant determining the Poincare 
cross-section and (x, y) the coordinates of the attractors 
in the Poincare cross-section , which is defined by: 
 

 
 
The choice of Poincare section is arbitrary; the only 
necessary condition is that the trajectory should cross 
the section once every acoustic cycle. For driven 
oscillators like the bubble model, a natural way to define 

 is to cut the torus like state space M transversally to 
the cyclic θ direction at a fixed value θ0 of θ.7 In this 
paper the stability of a single cavitation bubble is 
studied versus the driving pressure amplitude. 
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Slave-Master Feedback Control 
The questions of chaos control are actively discussed in 
scientific and technical fields.26-28 It is appropriate to 
decompose the applied works on chaos into scientific 
and technical (engineering) applications. Most recently, 
the following methods of control have been proven to 
be successful in the experimental control of chaos: 
 

 Determination of the stable and unstable 
directions in the Poincare section. 

 Self-controlling feedback procedure. 
 Introduction of small modulation of a control 

parameter. 
 Knowledge of a prescribed goal dynamics. 

 
The first two methods are usually called feedback 
methods, while the third and last are called non-
feedback methods.26, 29 The third method, small 
modulation, theoretically has focused on the 
suppression of chaos in the dynamics of different 
models. Although control of chaos by small 
modulations has not been proved in general,30 this 
method includes chaotic behavior generated by error 
signals due to the difference between the output signal 
and its value at an earlier time. 
The present analysis consider the parameter f 
(frequency) to be variable in the time such that 
thoroughly be change by another chaotic map. By 
considering a spherical cavitation bubble and the 
control system as a two dimensional dynamical system, 
the simple model for controlling the stability of a 
spherical cavitation bubble is introduced as follows: 
 

 
 
Where ξt is an arbitrary number between (0, 1). The 
concept of feedback control has been re-defined by 
taking into account the control parameter as a variable 
in the time that is changeable by another chaotic map, 
for which a new and effective control scheme has been 
presented. As this method is independent of geometrical 
considerations, so that, it can easily be applied in high 
dimensional dynamical systems. So, it makes it possible 

for us to study the interaction of the bubbles by a 
controlled technique in which we can realize the bubble 
cluster better. We describe a method for dynamical 
control of chaos in a spherical cavitation bubble. The 
chaos control problem has been studied without 
requiring any knowledge about the state of system. 
 
Analysis Tool 
There are several mathematical tools available for 
quantifying bubble stability ranging, the reasons to use 
maximum Lyapunov exponents and bifurcation 
structure in the absence of direct mathematical methods 
are: 
 

 The maximum Lyapunov exponents, 
approximated computationally for a wide range 
of injection values, indicates clearly the chaotic 
behavior of bubble interaction dynamics. 

 The computationally based bifurcation analysis 
shows that the bubble interaction dynamics 
transits among different regions such as fixed 
point, chaotic attractors and intermittent 
behavior. 

 
Lyapunov Exponent Spectrum  
Lyapunov exponents and entropy measures, can be 
considered as “dynamic” measures of attractors 
complexity and are called “time average”.31 The 
Lyapunov exponent λ is useful for distinguishing 
various orbits. The Lyapunov exponents quantify 
sensitivity of the system to initial conditions and give a 
measure of predictability. The Lyapunov exponents are 
a measure of the rate at which the trajectories separate 
one from another.  A negative exponent implies that the 
orbits approach to a common fixed point. A zero 
exponent means that the orbits maintain their relative 
positions; they are on a stable attractor. Finally, a 
positive exponent implies that the orbits are on a chaotic 
attractor, so the presence of a positive Lyapunov 
exponent indicates chaos.  The Lyapunov exponents are 
defined as follows: 
Consider two nearest neighboring points in phase space 
at time 0 and t, with distances of the points in the ith 
direction ||δxi(0)|| and ||δxi(t)||, respectively. The 
Lyapunov exponent is then defined by the average 
growth rate λi of the initial distance, 

 

 
 

(5) 

(4) 
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The existence of a positive Lyapunov exponent is the 
indicator of chaos showing neighboring points with 
infinitesimal differences at the initial state abruptly 
separate from each other in the ith direction.32 Using the 
algorithm introduced by Wolf et al., the Lyapunov 
exponent is calculated versus a given control 
parameter.33 Then, the value of the control parameter 
increases a little and the Lyapunov exponent is 
calculated for the new control parameter. By continuing 
this procedure the Lyapunov exponent spectrum of the 
system is plotted versus the control parameter. 
 
Bifurcation Diagrams 
Bifurcation means a qualitative change in the dynamical 
behavior of a system when a parameter of the system is 
varied. A bifurcation diagram provides a useful insight 
into the transition between different types of motion that 
can occur as one parameter of the system alters. It 
enables one to study the behavior of the system on a 
wide range of an interested control parameter. In this 
paper the dynamical behavior of the system is studied 
through plotting the bifurcation diagrams of the 
normalized radius of the bubble versus different control 
parameters. The analysis of the bifurcation was carried 
out in the Poincare section (P). To choose the Poincare 
section, we use the general method of setting one of the 
phase space coordinates to zero. In our analysis the 
condition: 
 

 
was used, which gives the maximal radii from each 
acoustic period.  This condition was also used to draw 
the bifurcation diagram of a cavitation bubble in.34 In 
order to obtain the bifurcation points, the equation of the 
bubble motion was solved numerically for 800 acoustic 
cycles of the lower frequency and a Poincare section 
was constructed. Considering only the last 200 cycles to 
make sure that the initial transient behavior is 
eliminated; for a given control parameter the points 
satisfying the above condition were plotted as  in the 
bifurcation diagram.  Then the control parameter was 
slightly increased and the new points were plotted 
versus the new control parameter. This procedure 
continued until the whole range of the interested control 
parameter was covered. For a full discussion about the 
Lyapunov exponent spectrum and bifurcation diagram 
and their utilization in order to study the bubble 
dynamics, one can refer to.7-9, 25, 35 Lyapunov exponent 
and bifurcation diagrams have also been applied to 

study the dynamics of chemical systems. As an 
example, they have been applied as analysis tools to 
study the dynamics of the well-known Belousov-
Zhabotinsky reaction.36-40 

 
 

 
Fig. 1:  Bifurcation diagrams of the normalized bubble radius 
driven by 300 kHz of frequency with the initial radius of 10 µm 
versus pressure: upper panel (a) chaotic behavior before applying 
the proposed technique, lower panel (b) after applying the Slave-
Master Feedback control method. 
 
 

 
Fig. 2: Lyapunov spectra before and after applying the Slave-
Master Feedback control method. Upper panel (a) Represents the 
case before applying the method while lower panel (b) represents 
the system after control. 
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RESULTS AND DISCUSSION  

In order to streamline the manifestation of the method 
efficiency in suppressing chaos, some chaotic zones 
have been chosen as samples to be subjected to the 
Slave-Master Feedback control method. For the 
associated zones the dynamical behavior of the bubble 
was analyzed before and after control. This is done 
through computing its bifurcation diagram and the 
corresponding Lyapunov spectrum.  Our goal is to seek 
maximum Lyapunov exponents and bifurcation analysis 
that can help us understand the dynamical behavior of 
the bubble with respect to the wide range of control 
parameters. Also time series of the normalized radius of 
the bubble are presented in order to reveal the 
stabilizing effect on the oscillations of the bubble in a 
given single value of the control parameter. The results 
are depicted in Figs. 1-8. 
 

 
Fig. 3: Time series and trajectory in state space projection of 
normalized bubble radius driven by 10 µm initial radius and 250 
kPa of pressure:  (a) chaotic oscillations (Without applying the 
proposed technique), (b) regular oscillations (after applying the 
proposed technique). 
 

 
Fig. 4: Time series and trajectory in state space projection of 
normalized bubble radius driven by 10 µm initial radius and 900 
kPa of pressure:  (a) chaotic oscillations (Without applying the 
proposed technique), (b) regular oscillations (after applying the 
proposed technique). 

The first sample (pressure-bifurcation diagram of 
bubble) is presented in Fig. 1(a). It belongs to a bubble 
with initial radius of 10 µm exposed to a single 
frequency force of 300 kHz when the control parameter 
is pressure in the range of 10 kPa - 1 MPa. In order to 
study the possibility of reducing chaos, a dynamical 
control method is applied. Fig. 1(b) presents the 
controlled dynamics after applying the dynamical 
control method. It is considerable that after applying the 
method, chaotic zone is reduced (see Fig. 1(b)). The 
maximum Lyapunov exponents is also an important 
indicator for a dynamical system to have a potentially 
chaotic behavior. Accordingly, the Lyapunov spectra is 
outlined in Fig. 2. Fig. 2(a) represents the original 
system, while Fig. 2(b) represents the controlled 
system, where Lyapunov exponent is mostly positive 
indicating a chaotic behavior. The existence of the 
negative Lyapunov exponent indicates the stable 
behavior. The controlling phenomenon has also been 
granted by plotting the normalized bubble oscillations 
versus time in a certain value of the pressure before and 
after control in Fig. 3 and 4. 
 

 
Fig. 5:  Bifurcation diagrams of the normalized bubble radius 
driven by 300 kHz of frequency with the initial radius of 10 µm 
versus pressure: upper panel (a) chaotic behavior before applying 
the proposed technique, lower panel (b) after applying the Slave-
Master Feedback control method. 

 
Fig. 5(a) represents the second chaotic sample zone 
(radius-bifurcation diagram of bubble) before applying 
the dynamical control method.  It belongs to a bubble 
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subjected to a single frequency source of 300 kHz and 
amplitude 1 MPa, versus its initial radius as the control 
parameter. Fig. 5(b) shows the controlled dynamics.  
Also the control method is tested through the Lyapunov 
exponent diagrams (see Fig. 6). This figure indicates a 
significant abatement of the Lyapunov exponent from 
positive values to negative ones indicating that stable 
dynamics was achieved after the proposed technique 
was engaged.  Fig. 6(a) corresponds the original system, 
and Fig. 6(b) corresponds the controlled system. Also 
the normalized oscillations of a bubble with 3 and 5 µm 
initial radius driven with 300 kHz of frequency and 
amplitude 1 MPa, before and after applying the Slave-
Master Feedback control method, are shown in Fig. 7 
and 8. The obtained results indicate that stable dynamics 
can be achieved after the proposed technique. 
 

 
Fig.  6:   Lyapunov  spectra  before and  after  applying  the  
Slave-Master  Feedback  control method(initial radius of 10 µm).  
Upper panel (a) Represents the case before applying the method 
while lower panel (b) represents the system. 

 
However, the possible role of Slave-Master Feedback in 
controlling the size of the bubble and hence deciding the 
optimum amplitude so as to minimize the energy 
expenditure was not addressed in previous studies.  
Therefore, it is necessary to have good understanding of 
the bubble dynamics, to provide reliable control 
mechanisms for the wide range applications in industry.  
A better understanding of cavitation bubbles’ behavior 
is the first step toward controlling chaotic behavior of 
the bubble and using cavitation.  Reducing chaos using 

Slave-Master Feedback control can be practically 
advantageous, in particular, in applications involving 
cavitation bubbles for medical purposes. However, 
chaotic oscillations of the bubbles decrease the 
treatment efficacy and makes it hard to control. 
Reducing chaotic dynamics can be a first step in 
increasing the predictability and safety of the treatment. 
 

 
Fig. 7: Time series of normalized bubble radius driven by 3 µm 
initial radius, 300 kHz frequency and 1 MPa of pressure:  (a) 
chaotic oscillations (Without applying the proposed technique), 
(b) regular oscillations (after applying the proposed technique). 
 

 
Fig. 8: Time series of normalized bubble radius driven by 5 µm 
initial radius, 300 kHz frequency and 1 kPa of pressure:  (a) 
chaotic oscillations (Without applying the proposed technique), 
(b) regular oscillations (after applying the proposed technique). 

 
CONCLUSION 

The dynamics of acoustically driven gas bubbles has 
been studied applying the chaos physics methods.7-9, 22 
Results indicate its rich nonlinear and chaotic dynamics 
with respect to variations in the control parameters of 
the system.  Hence, in the light of the above discussion, 
it can be stated that acoustic pressure shows its 
influence on the bubble dynamics.7-9 Therefore, 
pressure can be regarded as the most important factor in 
stability of the bubble. From the practical point of view, 
frequency is the other important factor in the bubble 
dynamics.  It is an essential factor, which can influence 
a spherical cavitation bubble dynamics. To reduce 
chaotic oscillations of the bubble, by considering 
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frequency as a practical control tool, the new practical 
control method based on the frequency circuit is 
introduced. The bifurcation curves and Lyapunov 
exponent spectrum of the bubble output have shown 
that the chaotic dynamical behavior of the bubble can 
be totally converted to a stable state using the control 
method. This specific control scheme is of great 
importance since it is adaptable to applications 
involving acoustic cavitation phenomena.  In fact, the 
physical application of the SMF method are in progress 
and the result will be reported elsewhere.41 In order to 

accurately determine the control parameter values, one 
of the most important factors that should be taken in to 
account is the influence of the bubble-bubble 
interaction. Details of such clustering systems are very 
much important. This is because the bubble pulsation is 
strongly influenced by the interacting surrounding 
bubbles.42 Therefor, due to the importance of topic in 
various aspects, investigation of the efficacy of the 
slave-master feedback control method in a system of 
interacting bubbles can be one of the subjects for future 
studies. 
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