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ABSTRACT.  A system of a particle kicked by a 
Gaussian beam is studied. A description of the chaotic 
behavior of this system is presented. The suitability of the 
model for cryptography is demonstrated by applying the 
Einstein-Podolsky-Rosen correlations and calculating the 
entanglement parameter. Based on this model, we introduce 
a quantum secure communication protocol. By using the 
Shannon information theory about the detailed analysis of the 
Gaussian cloner attack strategy about this system, we 
demonstrate that the system is both safe and reliable. The 
results show that the proposed algorithm improves the 
problem of failure of encryption, such as small key space and 
level of security. 
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INTRODUCTION 

Quantum cryptography, which is also known as 
Quantum key distribution, is a state of the art approach 
that represents the features of quantum mechanics to 
guarantee the safe exchange of secret keys. The laws of 
quantum mechanics govern fundamental particle 
physics. At atomic scales, the fundamental particles 
lack precise location and speed. The famous Heisenberg 
uncertainty principle states that any observer who 
wishes to obtain location information loses speed 
information. This is a fundamental limitation and has 
nothing to do with the observer’s technology. The first 
application of quantum information theory introduced 
in the mid-twentieth century was proposed by Wiesner.1 
As a benefit, the quantum cryptography could supply a 
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secure communication way.2-8 The security is assured 
by the laws of quantum mechanics.1, 2, 5, 9 Many 
Quantum Key Distribution (QKD) systems that are 
dependent on a Discrete Variable (DV) are exhibited.10 
In this system, an encoded binary bit into a quantum 
state is sent by the sender (Alice) to the receiver (Bob). 
In this case, the decoded bit value by Bob cannot be 
concluded for Alice. This attribute means that the 
system is deterministic, which is very important for 
assuring the security of this protocol. However, the 
deterministic estate results in a loss of qubits. Most 
recently, many quantum secure communications based 
on continuous variables have been proposed.11, 12 We 
now want to propose a new deterministic quantum 
communication system, dependent on DV entanglement 
state or non-orthogonal state.13-15 These systems clearly 
increase the value efficiency of quantum 
communication schemes by applying the technique of 
ping-pong of photons.16 We introduce a quantum 
secure communication system dependent upon the 
correlation of the DV (Discrete Variable).17 There are 
two principles for examining the cryptography on a 
discrete kicked Hamiltonian system: 1) this 
Hamiltonian is super sensitive to primary condition, i.e., 
it has a chaotic function; 2) the cryptographic function 
of this Hamiltonian has a high degree of safety, that the 
smallest change regarding the input from Alice can lead 
to the detection of Eve. Therefore, Eve is practically 
impossible because of the reason we had mentioned and 
also owing to the right below.18-21 This system can be 
used as a QKD system and quantum encryption to send 
a message. The discrete Gaussian modulation used on 
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the DV carrier increases the competence of the quantum 
secret communication noticeably.5 The security of the 
system against the general Gaussian-cloner 
eavesdropping attack is illustrated using Shannon’s 
information theory.22-24 The paper continues as follows: 
our model system is proposed, then we will propose an 
algorithm and calculate entanglement parameter F for a 
mixed open system. Furthermore, we are going to study 
security analysis by using the Shannon’s information 
theory. Finally, we provide the obtained conclusions. 
 
MATERIALS AND METHODS  

Models 
We start with the Hamiltonian of a particle kicked by a 
Gaussian potential: 

 

 

(1) 

 
Classical equations of motion read: 

 

(2) 

 
(3) 

 
by considering: 

 
 
The dimensionless motion equations are as follows25-28: 

 

(A1) 

(A2) 

 
Integration of eq. (A1) from n to (n + 1) and substitution 
the solution of (A1) into (A2): 

 

 
 

(4) 

 
We integrate of eq. (4) from t= n to t= (n+1), and insert 
x(n) = x, x(n+1) = xn+1, p(n) = pn and p(n + 1) = p, and 
obtain: 

 

 
(5) 

 

 
Where K is a parameter that determines “how chaotic” 
the map is. Fig. (1) and Fig. (2) depict the phase space 
for the particle kicked by a Gaussian beam Hamiltonian. 
The first property of this map is reflection symmetry; (x, 

p) → (-x, -p). This property of this map is used to 
calculate the main periodic orbits.25, 21 

 

    
Fig. 1: Plot of the phase space for fixed parameters of “K”. The 
curves are the level sets of the particle kicked by a Gaussian beam 
Hamiltonian, eq. (5). The different colors correspond to 
trajectories beginning from different initial conditions. 
 

 
Fig. 2: Plot of the phase space for differential parameters of “K”. 
The curves are the level sets of the particle kicked by a Gaussian 
beam Hamiltonian, eq. (5). The different colors correspond to 
trajectories beginning from fixed initial condition. 

 

 

Encryption of Algorithm Based on the Standard Map 
If we imagine (p1, x1) as two inputs for cryptography 
system, therefore, (p2, x2) are considered as outputs of 
the first cryptographic cycle. So if we implement 
secondary iterate in second cryptography cycle n = 2; 
therefore, (p3, x3) is taken into account as outputs of the 
secondary cryptography cycle. We obtain: 
 

 

 
(6) 

 
 

(7) 
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We have: 

 

 
(8) 

 

where γx and γp are coefficients for giving minimum 
variance, respectively. 
Using eq. (6) to obtain minimum variance  and : 

 

 
(9) 

 

A minimum variance occurs for a particular quantity of 
γ. 

 

 

(10) 

and: 

 
 

 

(11) 

 

Derivative of  and with respect to γ, we obtain: 

 

 

 
(12) 

and: 

 

 

 
(13) 

 

By defining the important parameter Fa, which is both a 
criterion for the entanglement of two systems and the 
necessary condition for cryptography, we want to show 
that Fa < 1 is an essential condition for cryptography. 

 (14) 
 

See Appendix A for details of calculating parameter Fa. 
We obtain: 

 
 

(15) 
 

By considering eq. (20) we can illustrate that in this 
model cryptography creation depends on Fa, in which K 
< 1. 

 

 

 
(16) 

According to the following formula: 

 

 
(17) 

 

We can use eq. (22), to calculate Minimum variance 
 and . Given the assumptions G = 1 and η 

= 1 (Eve absent), we obtain parameter Fb (See Appendix 
A). 

 
 

Alice reports to Bob both of the measurement results. 
Bob is estimated Fb parameter. 
 
Protocol 
Such a suggested system can be used for random 
distribution to convey messages utilizing different input 
parameters. The protocol steps are as follows. step1. 
Step 1. Alice modulates on two inputs with states x1, p1 
by using mapping, M: 

 
 

Therefore, these two combinations create two new 
states after the first iteration, two new states are x2, p2, 
which are input states for second iterate state. When that 
parameter has K, states x3 with p3 are correlated and this 
correlation increases with K coefficient. 
Step 2. Alice can calculate parameter Fa between x3, p3 
according to the equation mentioned above on the 
previous page. Alice writes the results of the 
measurement. Fa is a way to detect Eve after the end of 
the transmission. Although the states of x3, p3 have been 
sent to Bob. 
Step 3. Bob applies the third iterate to receive a state of 
x3, p3. State x3, p3 is similar to x4, p4, when Eve is absent. 
After the end of the operation, Bob measures both of the 
x4 or p4 in output mode of x12, p12. 
Step 4. Alice reports Bob the results of both 
measurements. Bob estimates parameter Fb. If Fb > Fa 
then, Eve exists, and if Fb = Fa, Eve absent. 
 
RESULTS AND DISCUSSION 

Quantum cryptography security is an important issue. 
The proposed system security is reviewed by Shannon 
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Information Theory. To illustrate the security and 
detection of eavesdropping, the secret information rate 

 and entanglement parameter F are used, 
respectively.  The secret information rate is the only 
Alice-Bob connection in Quantum Key Distribution. 

 
 

 and  are the mutual information between 
Alice and Bob and the mutual information of Alice and 
Eve, respectively. 
 

 
Fig. 3: Schematic demonstration of a quantum secure 
communication scheme based on Discrete Variable of the particle 
kicked by a Gaussian beam. LA: linear amplifier. BS: beam 
splitter. G: the gain of LA. η: the transmission coefficient of BS. 
The Arabic numerals denote the mode. 

 
Fundamental of General Gaussian Cloner 
To describe the general Gaussian cloner, different parts 
of it, including Liner Amplifier (LA) and Beam Splitter 
(BS), must be examined. If x3 or p3 and x7 or p7 are input 
LA, one of outputs is obtained as follows: 

 
or 

 
 

where G > 1 is the power of LA and  or  and x9 
, or p9 are two inputs for BS. If G = 1, the Gaussian 
cloner is reduced to the beam splitter. 29, 30 
The Gaussian cloner outputs are listed below: 

 

 
 
 

(18) 

 

By using eq. (22), one may investigate the outputs of the 
Gaussian cloner (Fig. 3). 
 
Secret Information Rate 
The secret key can be provided by Alice and Bob with 
classical error correlation and privacy enhancement 

techniques when . To achieve , 
according to Shannon information theory, the 
probability distribution of X and P is considered in all 
states. Assuming that the Gaussian cloner was used by 
Eve to eavesdrop on the quantum channel31,32, we will 
continue the discussion. 
 

 
Fig. 4: The dependence of  on  in the QKD 
process (  = 10;  = 1; and  = 0.1). 
 

 
Fig. 5: The dependence of  on  in the QKD 
process (  = 10;  = 1; and G = 1). 
 

 
Fig. 6: Schematic The dependence of  on  in the 
quantum encryption process. The parameters are  = 10; 

 = 30; and  = 0.1. 
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We have: 
 

 

 
 
 

(19) 

 

In the equation above, the random variables follow 
Gaussian distribution. 
 

 

 
(20) 

 

With i = 7, 9, that is vacuum state. Now, Bob applies x4 
or p4 to receive state X10 or P10. States X10 or P10 is 
similar to x3 or p3, when Eve is absent in the quantum 
channel.32 
 

 

 
(21) 

 

According to eq. (9), we can obtain the variances of X11 
and P11. 
 

 
 

We have to calculate the variance: 
 

 

 
(22) 

 

The variance of the signal distribution of measuring 
either X or P is: 
 

 (23) 
 

For noise, the variance is calculated as follows: 
 

 (24) 
 

From the above equations for Alice and Eve, we 
calculate the signal-to-noise ratio: 
 

 
 

(25) 
 

The Additive White Gaussian Noise (AWGN) channel 
capacity is obtained by considering Shannon's 
information theory33, 13, 34 as follows: 
 

 

 

(26) 

 

In the above equation, the signal-to-noise ratio and 
variance of the signal and the variance of the noise are 
shown with , and , respectively.  
Given the Gaussian distribution signal and the AWGN 
channel and the mutual information channel capacity, 
the mutual information between Alice and Eve is 
obtained as follows: 
 

 

 

(27) 
 

By calculating the variance of the signal distribution for 
the system, the following equation is obtained: 
 

 
 

The noise variance is calculated as follows: 
 

 
 

The signal-to-noise ratio is gotten for Alice and Bob: 
 

 

 

(28) 
 

The mutual information of these two people can be 
calculated as follows: 
 

 
 

(29) 
 

By using eqs. (44) and (45), we acquire the mutual 
information I(α, β) and I(α, ε).  Alice and Bob can obtain 
a secure final key given the classical error correction 
and privacy amplification provided that I(α, β) > I(α, ε) 
exists. The final key assembled based on the 
circumstance.30 

 

 (30) 
 

In the absence of Eve (G = 1 and η = 1) based on eqs.  
(45) and (46) we have: 
 

  

 

 

(31) 
 

The quantum channel capacity for Alice and Bob is 
evaluated by . The increase in  with  in eq. (47) 
is seen. If  > 0, we obtain a secure key for a QKD 
scheme. In the remaining text, we consider  = 10;  = 
1. Figs. 4, 5 are plotted for demonstrating dependence 
between  and η. In Fig. 4, for larger k at  = 0, η is 
smaller. It is more appropriate to implement the key 
distribution, a high degree of entanglement for the CV 
EPR pair. In Fig. 5, the relevancy of  and η is plotted 
for different G. η becomes smaller by considering large 
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G and  = 0. By focusing on the mutual information 
, we try to know how much information Eve can 

get through eavesdropping in this quantum encryption 
algorithm. In Fig. 6 we plot the dependence of on 
η with k = 0.1, Σ = 10 and σ = 30 for different G. For 
example with G = 10, when Eve receives thirty percent 
of the signal, the information are 0.0033 bits. This 
information is insignificant compared to the mutual 
information of Bob and Alice. Besides, the security 
level requested, the parameters k, σ may be selected. 
Our results are better than those already reported.22 For 
G = 10 in Fig. 6, extracted information by Eve is 
0.00333 bits but in similar condition with our earlier 
work22 is 0.1262 bits. 
 
CONCLUSION 

We present a quantum secure communication system 
with the correlation of discrete variable EPR. This 
method can be used to distribute quantum keys and to 
transmit many messages whose key is already shared. 
The Hamiltonian and proposed algorithm mentioned 
above recuperate some failures of encryption such as 
small key space and level of security. The security of 
the proposed method against the Gaussian-cloner attack 
is illustrated by calculating the secret information rate 

 and the Shannon mutual information I(α, ε). Also, 
the DV EPR correlation produced by NOPA provides 
its physical security. Given the work being done today 
in the field of Einstein-Podolsky-Rosen (EPR) 
entanglement,35 it could be the promise of quantum 
communication. We can hope that subsequent studies 
increase encryption speed. 
 
APPENDIX A.  
Calculating the Entanglement Parameter 
As usual, to calculate Fa we have to find .  

 
 

 (.1) 

 (.2) 

and  

 
  

 (.3) 

 
Inserting eqs. (12), (15), (16) and (17) into eq. (10) we obtain 

 (.4) 

On the other hand, we can calculate  by using eq. (11). 

 
because: 

 
In addition : 

 
Now, we calculate : 

 

 

 
therefore: 

                      
 

(.5) 
 

Inserting eqs. (18) and (19) into eq. (14) we obtain: 
 

 
then 

                 
 

(.6) 
 

In the same way, with respect to the following equations, 
parameter Fa can be calculated. 

 

 
(.7) 

 
 

 
 

 
 (.8) 

 (.9) 
 

Now, if we do derivative from on , we have: 

 

     
(.10) 

and 

 

    
(.11) 

 

Now, we want to find , and then, create their 
relationship: 

                                
 

(.12) 

 
 

 
 

 

When G = 1 and η = 1 (Eve absent), relationship is: 
 

 
m 
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